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Abstract. The storage capacity of multilayer networks with overlapping receptive fields is
studied for constructive algorithms using Boolean perceptrons as their basic building block
which have been investigated within a replica framework. The assumption of weak coupling
between subsequently constructed perceptrons is verified within a replica symmetric (RS) ansatz
and shown to be negligible in most cases in comparison with correction due to replica symmetry
breaking (RSB) in individual perceptrons. The capacities of a tiling-like and variants of
the upstart algorithm are then calculated within RS and one-step RSB with the quenched
average taken over the individual units separately for networks with up toK = 4000 and
K = 600 units respectively. Within this treatment, the storage capacityαKc seems to exhibit a
power-law behaviour in logK with an exponentn that may depend on the algorithm and the
stability. However, due to finite size effects inK reliable estimates ofn could not be extracted.
Nevertheless, the results strongly indicate thatn should be strictly smaller than 1 within one-step
RSB, whereas within RS the Mitchison–Durbin bound is violated for finiteK andn > 1 may
hold asymptotically.

1. Introduction

Since the ground breaking work of Gardner [1, 2] on the storage capacity of Boolean
perceptrons, the replica [3] and other techniques of statistical mechanics have been
successfully employed to investigate many aspects of the performance of simple neural
network models. Whereas initially research focused on the storage capacity problem
attempting to evaluate the number of examples with random output that can be stored
on average, the attention has shifted recently mainly towards the understanding of the
supervized learning problem within the student–teacher scenario, which calculates the
generalization capability of a neural network model with the number of training examples
available.

The capacity problem does, however, remain relevant due to its relation to the Vapnik–
Chervonenkis (VC) dimension [4] of computational learning theory and the probably
approximately correct (PAC) framework, the difference broadly speaking being that
statistical mechanics analyses the average case, whereas the PAC framework analyses the
worst case. Within the PAC framework, the VC-dimension enables one to determine an
upper bound on the examples needed to achieve a certain generalization error [5, 6], broadly
reflecting the view that generalization can only begin once the storage capability has been
exceeded. The capacity of a network model therefore influences both its flexibility of
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0305-4470/98/458977+45$19.50c© 1998 IOP Publishing Ltd 8977



8978 A H L West and DSaad

implementing complicated mappings and its generalization ability for a training set of given
size.

Substantial work has therefore been carried out in both communities in order to calculate
these storage quantities, however, the problem has proved to be very hard for multilayer
perceptrons (MLPs) and most success has been reserved to the estimation of upper and
lower bounds [6–11] of two-layer networks, resulting in the well known lower and upper
bounds of the storage capacity (per adjustable weight) of 1 and log2K (Mitchison–Durbin
(MD) bound [7]) respectively, whereK is the number of units in the hidden layer. Attempts
for the direct calculation of the capacity limit of MLPs have been hampered by the inherent
difficulties of the replica calculation needed to perform the quenched average of the training
set†. In the capacity calculations of the parity‡ [13] and committee§ [14, 15], replica
symmetric (RS) treatments violate the MD bound derived by information theory or counting
arguments similar to [16], whereas a replica symmetry breaking (RSB) calculation [13]
saturate the bound in theK →∞ limit for the tree parity machine. Other efforts [17] suggest
breaking the symmetry of the hidden units explicitly prior to the actual calculation, but the
resulting equations are approximations and difficult to solve for large networks. Recently,
the introduction of a new technique [18], focusing on the number of implementable internal
representations instead of on the Gardner volume, has been used to calculate the capacity
of the tree [19] and fully connected committee machine [20, 21]. In theK →∞ limit, the
committee machine does not saturate the MD bound but still diverges with

√
logK.

This paper avoids these problems by addressing the capacity of a class of networks with
variable architecture produced by constructive algorithms. In this case, the basic building
blocks are simple Boolean perceptrons, which are trained individually and results derived
for Boolean perceptrons above their saturation limit [22] can be applied iteratively to yield
the storage capacity of two-layer networks.

A multitude of constructive algorithms have been proposed over the years, e.g. [23–29].
They are all loosely based on the idea that in general it isa priori unknown how large a
network must be to perform a certain regression or classification task. It seems therefore
appealing to start off with a simple network, e.g. a Boolean or sigmoidal perceptron, and to
increase its complexity by adding further units only when needed, thereby eliminating the
cumbersome search for the right network size.

However, the constructive algorithms proposed differ in several aspects. Some of them
are applicable to regression [24, 27] others to classification [25, 26, 28, 29] tasks, which
are often reflected in the type of units they use (Boolean, sigmoid, RBF (radial basis
function), or HON (higher order network)). They also produce several typical architectures,
e.g. hierarchical tree type [28], list type [29], cascade type [26, 27], self-organizing cell-
type [30], multilayer with either fixed [28, 31, 35] or problem driven deepness [25]. Some
algorithms also have several versions, which usually result in different architectures.

Another important difference lies in the training procedure performed once a new unit
has been added. Some algorithms require only the training of the newly added unit fixing
the weights of previously constructed units, while others require some sort of retraining
of connections involving output weights and/or unit weights. The great advantage of the
former is that the training time of the whole network is usually relatively short, since
training involves only small units, typically single-layer networks, for which fast training
algorithms are available even for Boolean units [36–42]‖. These constructive algorithms

† Such difficulties can be avoided in the generalization problem by studying on-line learning [12].
‡ The output of a parity machine is the product of all hidden unit outputs.
§ The output of a committee machine is the majority of all hidden unit outputs.
‖ Some of these algorithms have to be stabilized for nonlinear separable problems by thepocketalgorithm [23].
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can therefore avoid the difficulty of learning internal representation of units, e.g. by back-
propagation for sigmoid units [43, 44] or by the CHIR (learning by choice of internal
representations) algorithm for Boolean units [45]. This is in contrast to other proposed
constructive algorithms [30, 24] and general MLPs with ana priori fixed architecture.
This training process is especially difficult for Boolean units, where powerful second-order
gradient-based techniques [46] are not available.

A further advantage of some constructive algorithms, which train only single-layer units,
is the existence of convergence proofs, i.e. one can show that training will converge in finite
steps, unlike conventional networks which can be trapped in bad local minima and often
have to be restarted many times before an acceptable solution is found. For some algorithms
this convergence is to zero training error, a feature which leads to undesirable over-fitting
and subsequent poor generalization for noisy data. However, this problem can be addressed
by including some kind of penalty term on the creation of new units to the training error
and/or by training with negative stability allowing for errors close to the decision boundary.
That a constructive algorithm can in principle be a very good generalizer has been shown
in [47]. There it has been proven within the PAC framework, that anyweak learner,
a machine which only achieves a generalization error just below random guessing, can
be used to constructively build astrong learner, a machine which achieves any arbitrary
small generalization error. Thisboostingalgorithm and its improved variants [48, 49] have
shown very promising results in real world applications [50], along with other constructive
algorithms which have been tested on noisy problems [51].

Other approaches, which aim at automating the choice of appropriate network size,
are based on starting with large networks and then attempt to optimize performance by
identifying and removing unnecessary individual weights and/or units according to some
predefined rules, e.g. [52–56]. These procedures usually require computationally expensive
calculations and further retraining of the pruned network. A conceptionally different but
effectively similar approach is to add penalty terms [57–59] to the energy function to be
minimized, often also termed weight decay or regularization, which practically eliminate
weights which do not significantly contribute to the reduction of the training error. Within
a Bayesian framework [60], it is also not necessary to restrict the number of unitsa
priori ; however, Bayesian methods can be computationally prohibitively expensive in many
situations.

Overall, constructive algorithm seem therefore rather appealing, but the abilities of
different algorithms have neither been compared heuristically in a systematic way on real
world problems nor has any attempt been made to understand their properties within a
theoretical framework. The aim of this paper is, therefore, to introduce a framework in which
one aspect of the performance, the learning of random dichotomies or capacity problem, of
a class of constructive algorithms can by analysed and compared objectively. This should
give us some indication of how effective different constructive algorithms use their weights
in comparison with each other and to the upper bounds known for unconstrained MLPs.

The class of constructive algorithms susceptible to this framework consists of algorithms
which use only Boolean perceptrons as the basic building block and where later generations
of units receive no input from previously constructed units, unlike e.g. cascade networks
such as [25, 27]. This is due to the fact that our treatment relies on iteratively using results
derived for individual Boolean perceptrons above their saturation limit [22]. We therefore
rely on the approximation that the quenched average over the training set can be taken
separately for each individual perceptron, i.e. correlations between the output of previous
hidden units need not be taken into account and the correlations between the errors of the
units are small.
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In this paper, we will investigate in particular variants of the upstart algorithm [28]
and a tiling-like algorithm [62], although our calculations can easily be extended to many
other algorithms, such as [32, 34, 29]. For the algorithms studied here, the corrections to
the decoupled approximation have been calculated for two consecutive units within an RS
ansatz and turn out to be small in most regimes in comparison with correction due to RSB
in each individual perceptrons, rendering errors due to the decoupling assumption small.

For these algorithms, we calculate the capacity within the RS and one-step RSB ansatz
for networks with up toK = 4000 (RS) andK = 600 (RSB) units. Within this treatment,
the numerical results strongly indicate that the storage capacityαKc exhibits a power-law
behaviour in logK with an exponentn, which may be stability and algorithm dependent. The
exponent has been measured locally (in contrast to an extrapolated estimate) showing slight
systematic shifts with the number of unitsK, so that reliable upper bounds or estimates
of n for K → ∞ could not be extracted. Therefore, recent asymptotic capacity results
may be interesting theoretically, although, finiteK effects may render them irrelevant for
practical considerations. For all constructive algorithms studied, the finiteK results further
indicate thatn is strictly smaller than 1 when accounting for RSB. Within the simpler RS
treatment, the Mitchison–Durbin bound is violated for large finiteK andn > 1 may hold
asymptotically.

The paper is structured as follows. In section 2 the capacity problem is introduced
and the investigated constructive algorithms described. In section 3, an introduction to
the replica framework used for the capacity calculation is given and the mechanism for
employing results derived for simple perceptrons to obtain results for the capacity limit of
constructive algorithms is explained. This will be complemented by a brief presentation
of results for a single and two coupled perceptrons, which give insight into the numerical
results of the iterative calculation of the capacity limit of networks built by constructive
algorithms. In sections 4 and 5 the numerical capacity data is presented and analysed by
calculating the local power-law exponentn(K). The paper finishes with a discussion and
some concluding remarks in section 6.

2. The capacity problem and constructive algorithms

In this section, we first define the capacity problem and introduce the simplest neural
network model, the Boolean perceptron. This will be used to motivate the introduction of
constructive algorithms. The tiling-like algorithm [62], which has previously been analysed
numerically within an RS ansatz, is explained and used to describe features underlying
generic constructive algorithms. The ideas of the original upstart algorithm [28] are
introduced also and compared with the versions, termed upstart II-III, which have been
used in the capacity calculations.

2.1. The capacity problem and the Boolean perceptron

Both the capacity and VC-dimension problem consider whether a learner, e.g. a neural
network, can implement a set ofp = αN random dichotomies given as a (training) set
of input–output pairs(ξµ, ζµ) (µ = 1, . . . , p) with ξµ ∈ {−1, 1}N and ζµ ∈ {−1, 1},
where both the inputsξµ and the outputsζµ are drawn independently from their respective
probability distributionsP(ξµ) andP(ζµ). Note, that one can use a symmetric Boolean
{−1, 1} output representation without loss of generality (w.l.o.g.) since an asymmetric
representation{0, 1} can be mapped to a symmetric one by redefiningζµ′ = (2ζµ−1). For
simplicity, we will henceforth refer to a Boolean perceptron just as perceptron.
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The difference between the capacity and the VC-dimension definition is roughly that
the former is probabilistic and distribution dependent, whereas the latter is not. The VC-
dimension is formally defined as the maximal set sizep of input examples which can
be shattered, i.e. mapped to any desired output set. The capacity limit is defined as the
set sizep for which a random input example set can be correctly mapped to a random
output set with probability1

2, i.e. when taking thequenchedaverage over input and output
sets. In the thermodynamic limit of infinite input dimension,N →∞, this probability can
be conveniently redefined as arbitrarily close to 1 as the probability of implementability
becomes a step function. Furthermore, the capacity limitαc is usually defined not in terms
of the set sizep but as the ratio betweenp and the number of free parameters in the
network, which, for example, for a two-layer network in the thermodynamic limit isNK,
whereN is the input dimension andK the number of hidden units. For the distributions
it is generally assumed that the binary input distribution is independent of the pattern and
site indicesµ andj

P (ξ
µ

j ) = P(ξ) = 1
2(1+mi)δ(1− ξ)+ 1

2(1−mi)δ(1+ ξ). (1a)

The random output distribution is also chosen to be independent of the pattern index

P(ζµ) = P(ζ ) = 1
2(1+mo)δ(1− ζ )+ 1

2(1−mo)δ(1+ ζ ) (1b)

wheremi andmo represent the input and output biases respectively.
The simplest neural network, the perceptron, is parametrized by its synaptic weight

vectorW ∈ RN and thresholdθ ∈ R, performing the mapping

σµ = sgn

(
1√
N
W · ξµ − θ

)
= sgn(hµ) (2)

where sgn(x) is the sign ofx andhµ is termed the activation of the perceptron.
A further property, which has a strong influence on the capacity limit is the error measure

used to train the perceptron. Here it is defined as

E =
∑
µ

Θ[κ − ζµhµ] (3)

whereΘ(x) is the Heaviside step function, which is 1 forx > 0 and 0 otherwise andκ is
the stability with which the patterns are required to be stored. The choice of the stability
κ has a significant impact on the capacity limit since it fixes the minimal allowed distance
between a pattern and the decision hyperplane of the perceptron. This error function, often
referred to as the Gardner–Derrida cost function, counts the number of patterns which are
implemented with a stability less thanκ, i.e. all misclassified patterns but also some correctly
classified patterns forκ > 0. The Gardner–Derrida cost function leads to the least number
of errors theoretically achievable by any ‘practical’ learning algorithm (e.g. [41]).

The capacity of the perceptron has been calculated initially for zero stability using
geometric arguments [16] (αc = 2) a result which has been reproduced for arbitrary stability
[1] within a replica framework. However, it is obvious that the perceptron can only learn
linear decision boundaries. Therefore, if the set of examples is not linearly separable with
a minimum distanceκ of all patterns to the hyperplane, the perceptron will not be able to
classify all patterns without errors. In this case, a learning machine, such as a MLP, that
is able to learn nonlinear decision boundaries needs to be trained on the examples. The
basic idea of many constructive algorithms is to add new perceptrons in such a way that the
combination of all their linear decision boundaries leads to a nonlinear decision boundary
that performs the required task. The constructive algorithms vary significantly in the way
these extra decision boundaries are trained and how they are combined to yield the overall
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output. Below, this will be explained for the constructive algorithms analysed in detail in
this paper, a tiling-like algorithm [62] and the upstart algorithm [28].

2.2. The tiling-like algorithm

The basic idea of the tiling-like algorithm [62] and of most other constructive algorithms
such as [25, 26, 34] is to constructively build a faithful internal representation in the hidden
layer, i.e. all patterns with the same internal representation share the same target output.
The remaining problem is then to devise a way to map the internal representation to the
desired output, which can be solved in many different ways. The tiling-like algorithm
achieves this by constructively building a very specific set of internal representations, which
is automatically mapped to the desired output by a hardwired parity function as a fixed
hidden-output mapping, where the output is just the product of the individual outputs of all
constructed units, leading to a chequered partition of the input-space.

The faithful representation in the hidden layer is achieved in the following way. The
first perceptron,U1, is trained on the original Boolean targetsζµ ∈ {−1, 1}. If this unit
makes any errors,ε1, on the training set, a second unit,U2, is created which is trained
on the complete training set but with modified targets exploiting the property of the parity
function: whereas the output of the whole network would remain unchanged for an output
of +1 by U2, it would be reversed for−1. Hence, the targets ofU2 are+1 for previously
correctly classified and−1 for misclassified patterns. This procedure is iterated until the
current unitUi classifies all patterns correctly (according to its targets). It can be shown
that this algorithm will eventually converge asUi corrects at least one previously incorrectly
classified pattern without upsetting any correctly classified ones. Note, that it is sufficient
to train each perceptron with stabilityκ to ensure that all examples are finally implemented
with the desired stability, a property which also holds for most other constructive algorithms
including the upstart algorithm.

2.3. The upstart algorithm

Although the basic idea of building a faithful internal representation by adding new units
holds also for the upstart algorithm [28], the technical details of the algorithm are somewhat
different to many other constructive algorithms. First of all, it uses an asymmetric
ζµ ∈ {0, 1} instead of the usual symmetric (Ising) representationζµ ∈ {−1, 1} for the
outputs. Similar to other algorithms, one starts with a single perceptron, themother unit
M, and further units are created only if erroneous patterns exist. However, in this algorithm
potentially twodaughter units, U+ andU−, are created to specifically correct one of the
two possible type of errors:wrongly-off errors, where the target was 1 but the output
is 0, andwrongly-on errors, where the target was 0 but the actual output is 1.U+ and
U− are connected to their mother unitM by a large enough positive or negative weight,
respectively, so that they overrule any decision byM when they are active(σ = 1).

Consider, for example, the new training set and targets that would be assigned toU−,
which will be connected with a large negative weight toM, i.e. whose role will be to
inhibit M. U− should be active(σ = 1) for patterns whereM is currently wrongly-
on and inactive(σ = 0) for patterns whereM is correctly-on. However,U− does not
have to be trained on patterns for whichM is correctly-off, since an activeU− would
only reinforceM’s already correct response. The remaining patterns, for whichM is
wrongly-off, need special consideration. They have to be included inU−’s training set with
target 0, in order to avoid inhibiting the pattern further which would lead to frustration
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Table 1. The targets of the original upstart algorithm and its variants depending on the targets
ζ and the outputσ of the current mother unit (or master output unit)M. The target ‘∗’ means
that the pattern is not included in the training set ofU±i for all algorithms, whereas a bracket
[·] around a target has the same meaning for upstart III where only one type of unit,U+i or U−i ,
is created per generation.

Targetζ

Outputσ ζ = 1 ζ = 0

correctly-on wrongly-on
σ = 1 U+i ∗ U+i [0]

U−i 0 U−i 1

wrongly-off correctly-off
σ = 0 U+i 1 U+i 0

U−i [0] U−i ∗

Figure 1. Networks of three generations produced by (a) the original upstart algorithm and (b)
the modified upstart II algorithm. The number of units of the original algorithm grows
exponentially with each generation whereas the modified version grows only linearly. The
black dots represent the input units. The open circles are hidden and output units created by
the two version of the upstart algorithm numbered after their generation. The wide arrows
symbolize input weights from all the input units, whereas the normal arrows represent single
weights between hidden units and to the output unitM. The plus and minus signs are the sign
of the connecting weights and the powers give an indication of their magnitude.

when combined with the output ofU+, which is trying to correct the wrongly-off patterns.
Similar arguments can be applied toU+, and the resulting targets and training sets for both
unit types are summarized in table 1.

If U+ andU− can correct all erroneous patterns, the algorithm has achieved its objective
and terminates. Otherwise, various possibilities exist for its continuation, of which several
have already been reported in the original works [28, 61]. In the original algorithm (termed
here upstart I), those daughter units with non-zero training errors in turn become the mothers
of the daughters of the next generation, leading to a hierarchical network architecture as
shown in figure 1(a). Consequently, this allows for a parallelization of the local training
procedure, but also tends to lead to an exponentional increase of the number of hidden
units (and hence unit specific training sets) with each generation, which may potentially
make extremely wasteful use of hidden units. It has already been pointed out in the
original publication [28], that this hierarchical tree can be squashed into an equivalent
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more conventional two-layer architecture, where all units (including the original unitM,
which can then be seen asU+1 ) are connected to a master output unitM, with positive
or negative weights whose magnitude increases with each generation in order to guarantee
that erroneous decisions are actually corrected by the following generation as shown in
figure 1(b). These two-layer networks show only a linear increase of the number of units
with each generation, which may use each unit more efficiently and which is also easier to
analyse for the purposes of this paper.

In this case, one has to decide what criteria to use for the creation of new units. One
could obviously create both types of units,U+i andU−i , simultaneously with each generation
as before if both types of errors are made, but this may be wasteful if, for example, there
are much more wrongly-off than wrongly-on errors.

A more efficient variant, here termed upstart II, is therefore to create both types of units
if the probability of both error types is identical and only one unit correcting the error of
higher frequency otherwise. Two obvious choices exist for evaluating these probabilities.
One could either use the marginal probabilities of wrongly-on and wrongly-off errors or
one could condition the probabilities on the original target, i.e. compare the probability of a
wrongly-on error given a pattern with original targetζ = 0 with that of a wrongly-off error
given a pattern with original targetζ = 1. We will denote the former as criterion (a) (i.e.
upstart IIa) and the latter as criterion (b) (i.e. upstart IIb). Obviously, these two variants
are identical for the case when the initial output distribution is unbiased, i.e. the number of
targets for each class is identical.

Note, that in principle it would not be necessary to include the wrongly-off patterns in
U−i ’s training set (and similarly wrongly-on patterns inU+i ’s training set) if only one unit
is constructed per generation, since in this case frustration of the output unit is not an issue
that has to be addressed. In order to investigate possible efficiency gains, a further variant,
upstart III, is proposed, which always creates only one type of unit and can therefore
implement the above mentioned reductions in training sets. As for upstart II, we again
consider both criteria (a,b).

The formal definition of these versions of the upstart algorithm is as follows.

Step 0.Create an asymmetric Boolean{0, 1} output unitM with threshold 1, to which all
other units, forming the hidden layer, will be attached to. Subsequently, create the initial
processing unitU+1 train it on the original targetsζµ, freeze its weights, and connect it to
M with a+1 weight, i.e.M has initially the same outputs asU+1 . Initialize the generation
index i = 1 and the index forU+ andU− units top = 1 andm = 0.

Step 1.Evaluate the number of wrongly-off and wrongly-on errors,εoff and εon, made by
M in generationi. Terminate if all patterns are correct, otherwise calculate the error
probabilities to be applied, i.e.poff = P(εoff) and pon = P(εon) for criterion (a) or
poff = P(εoff |ζµ = 1) and pon = P(εon|ζµ = 0) for criterion (b). Then create unit(s)
according to the employed variant, i.e. ifpon > poff then Ui+1 := U−m+1, if pon < poff

then Ui+1 := U+p+1, and otherwise(pon = poff) Ui+1 := U−m+1 + U+p+1 for upstart II and
Ui+1 := U+p+1 for upstart III. The targets and training sets of the new unit(s) are given by
table 1.

Step 2.The new unit(s) are trained on their new training set(s) and their weights are frozen.
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Step 3.The new unit(s),U+p+1 and/orU−m+1, are connected with positive respectively negative
weight of identical magnitude to the output unitM. The magnitude is adjusted so that
previous decisions are overruled if one new unit is active. Go back to step 1.

Similarly to the tiling-like algorithm, these versions of the upstart converge eventually,
as each new generation reduces the total error by at least one pattern per created unit.

3. Calculation of the capacity in a replica framework

As mentioned in section 2.1, the capacity limit is defined in probabilistic terms, as the
property of being able to realize a mapping on ‘average’ over all possible training sets. In
the statistical mechanics community this problem has been addressed in several ways, all
of them using the same basic technique. The initial approach [1], calculates the average
(logarithm of the) volume in parameter space, which implements the training set perfectly.
The reason for calculating the logarithm of the volume (often termedGardner volume) rather
than the volume itself, is that the first is assumed to beself-averagingin the thermodynamic
limit of infinite input dimension (N →∞), whereas the second is not. The capacity limit
is reached, when this volume vanishes. The second approach [2], calculates the average
free energy (corresponding to the error for the Gardner–Derrida cost function) the network
makes for a given training set size and training temperature. In the limit of zero training
temperature, the capacity limit is determined by the largest training set size with zero
error. The third approach [18], calculating the (logarithmic) number of implementable
faithful internal representation, is similar to the Gardner-volume approach and is especially
applicable in MLPs. The average of the logarithmic quantity over the input and output
distributions is in all cases performed by using the replica trick, which replaces the average
over the logarithm at the expense of introducing replicated network parameters.

These replica calculations are notoriously difficult for MLPs. Furthermore, it is not clear
how the above frameworks can be extended to the case of constructive algorithms, where the
architecture is not fixeda priori, but evolves during training and two instances of the same
training set size could, for example, lead to different architectures. However, in the case
of constructive algorithms, the optimization of each perceptron is performed individually,
severely constraining the interaction between the different perceptrons. The influence of
the previous perceptrons is only via the modification of the training set, by redefining the
targets and/or selecting a subset of the patterns. Since the original targets are random, it
could be argued that the redefined targets are approximately random as well, but coming
from a distribution with modified bias. In this case, the quenched average over the patterns
decouples, and the capacity of networks built by constructive algorithms can be calculated
from results derived for simple perceptrons: the errors made be the perceptron(s) of the
current generation determine the example loadα and the bias of the output distributionmo

for the next generation.

3.1. Assessing the influence of correlations

In order to assess whether this approximation is justifiable, a replica calculation for two
perceptrons created in consecutive steps of the considered constructive algorithms has been
carried out within a RS ansatz. These correlations should be dominant in comparison with
correlations between perceptrons which are more than one generation apart. The details of
the calculation and the results are reported in appendix A; here, only the main implications
will be reported. For both the upstart and the tiling-like algorithms, the effect of correlations
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between consecutive units on the capacity limit or the error rate is usually insignificant in
comparison with the effects of one-step RSB in the individual perceptrons. For the tiling-
like algorithm, the effects of correlations are usually smaller than for the upstart algorithm
and one even finds situations where the correlations are non-existent (zero bias and small
stability). Although, one can identify one region—small (but finite)mo, large κ, and α
around the capacity limit—where correlations are substantial, this region should be only
relevant for small networks and will have no bearing on the results presented here.

These correlation results may be compared with capacity results for fixed two-
layer architectures with unconstrained optimization. For the parity machine with fixed
architecture, which is somewhat related to the tiling-like algorithm, one finds that the
correlations (in terms of overlaps) between units are zero for any number of hidden unitsK

[15] (for zero stability and unbiased output distribution), leading to the same capacity
for tree and fully connected architectures. For the fully connected committee machine,
which is in spirit more similar to the upstart algorithm, one finds (anti-) correlations in the
capacity calculation for finiteK, which vanish proportional toK−1 in the limit of large
K [20, 21], leading only to a correction in the prefactor when compared with the tree
architecture [18, 19].

The two most relevant features found for the correlations hold for all constructive
algorithms considered here and should carry over at least qualitatively to a more accurate
one-step RSB calculation (which is beyond the scope of this work). First, any correlation
between the perceptrons leads to a decreased capacity of the combined network or to an
increased error rate above saturation†. The uncoupled approximation should, therefore,
constitute at least an upper bound to the true capacity, if this result holds qualitatively when
accounting for RSB‡. Furthermore, the correlations vanish in the region where both units
are highly saturated, which could be considered the most relevant region, since most units
operate in this regime for large networks. Hence, we believe that the upper bound calculated
should be relatively tight, especially for the tiling-like algorithm.

3.2. Capacity and error rates for single perceptrons

After having assessed the influence of correlations, and having concluded that their impact
is less significant to negligible in comparison with one-step RSB in the single perceptron,
the purpose of this section is to briefly review the results for the capacity and the error
rates for simple perceptrons insofar they are relevant for the ensuing capacity calculation.
We limit ourselves to the case of the spherical perceptron as the Ising perceptron behaves
generically similar. For completeness, the equations for the free energies and the error rates
are summarized in appendix B.

The capacity limit,αc, of a simple perceptron is only a function of two parameters§:
the output biasmo and the stabilityκ. It is evident, that an increase in stability leads to a
decrease in the capacity, whereas an increase in output biasmo leads to an increase in the
capacity, withαc → ∞ for mo → ±1. It is therefore convenient to introduce the ‘bias’
m̃o ≡ (1− |mo|) for large magnitude of the bias. In figure 2̃mo is shown as a function of

† This may seem somewhat surprising initially, since the anti-correlations in the committee-machine result in
an increase of the capacity of the fully connected in comparison with the tree committee-machine. However,
this effect may be explained by the constrained optimization for constructive algorithms and/or the increase in
functional flexibility when going from a tree to an overlapping architecture.
‡ The breakdown of one-step RSB in the individual perceptrons does not constitute a problem since further RSB
steps increase the error rate [63].
§ The third potential parameter, the input biasmi , can be absorbed by a suitable rescaling of the stabilityκ and
can therefore be set to zero w.l.o.g.
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Figure 2. The biasm̃o (or ratherm̃oα̂c to highlight the scaling ofαc with m̃o) is shown as a
function of the stabilityκ for several fixed normalized capacitiesα̂c(mo, κ) ≡ αc(mo, κ)/αc(0, κ)
(see the legend). The increase ofm̃o with κ shows that for largerκ a smaller biasmo is sufficient
to realize the same increase in the normalized capacity. The normalization ofm̃o with α̂c shows
the capacity grows slightly slower than linearly iñmo

−1.

the stabilityκ for several fixed normalized capacitiesα̂c, here defined as the ratio between
the capacity for non-zero and zero biasα̂c(mo, κ) ≡ αc(mo, κ)/αc(0, κ). The increase of̃mo

with κ shows that for largerκ a smaller biasmo is sufficient to realize the same normalized
capacity. The other important feature, can be seen by the normalization of the curves in
m̃o with α̂c, which demonstrates that the capacityαc grows slightly slower than linearly in
m̃o
−1 for all κ. Extending the asymptotic result for̃mo → 0 from [1] to finite stabilityκ,

one finds to leading orders

αc(m̃o) = 1

m̃o
{log(m̃o

−1)+ 2
√

2
√

log(m̃o
−1) κ +O(log[log(m̃o

−1)])}−1. (4)

This shows that the sublinearity ofαc is dominated form̃o → 0 by the term 1/ log(m̃o
−1)

independent of the stabilityκ for
√

log(m̃o
−1)� κ. The increase of̃mo with κ for constant

α̂c can therefore be explained by the decreasing relevance ofκ in determining the capacity
for large biasmo (or largeαc), when compared withmo = 0, where one finds forκ →∞ to
leading orderαc(κ) = (1+κ2)−1. The capacity of the Ising perceptron in the limitm̃o→ 0
can be calculated along similar lines using self-consistent ansätze for the order parameters
(justified by numerical results) yielding the identical result up to leading order inκ as in
(4) but for a rescaling ofαc by 2/π .

Above the capacity limit, the perceptron has to misclassify a certain fraction of the
example set, expressed in the error rate,ε, which depends on the output biasmo, the
stability κ, and on the example loadα. It is self-evident that an increase inα beyond the
capacity limit is followed by an increase inε. In order to assess how this increase relates
to the stabilityκ, figure 3 shows the normalized load̂α ≡ α/αc as a function ofκ for
various fixed error ratesε. The dependence on the output biasmo is illustrated by the
choice ofmo = 0 andmo = 0.9 in figures 3(a) and (b), respectively. In order to highlight
the scaling behaviour of̂α with the error rate,̂α was adjusted by the normalized remnant
error ε̄ ≡ (ε∞ − ε)/ε∞, whereε∞ is the asymptotic error rate forα→∞.
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Figure 3. The normalized load̂α ≡ α/αc (or ratherα̂ε̄ (see the text) to highlight the scaling of
ε with α) is shown as a function of the stabilityκ for several fixed error ratesε (see the legend)
and two output bias values (a) mo = 0 and (b) mo = 0.9. The decrease of̂α with κ shows that
the error increases more quickly for larger stability even if accounting for the decrease of the
capacity. The normalization of̂α with ε̄ ≡ (ε∞ − ε)/ε∞ helps to highlight the deviation of the
scaling ofε̄ from α−1.

For both output bias values, one finds thatα̂ increases (for given̄ε) for decreasing
stability κ, an effect which is somewhat reverse to the observation made for the capacity
limit as described in figure 2. That this effect is more pronounced formo = 0 than
for mo 6= 0 has its root in the changing structure of solution space. Formo 6= 0, the
solutions are always characterized by a non-zero thresholdθ , reflecting the non-zero output
bias. The asymptotic error rate (inα) is given byε∞ = (1− |mo|)/2, which corresponds
to deterministically classifying the larger example class correctly and misclassifying the
smaller example class by using a threshold of infinite absolute value. The asymptotic error
rate is approached by a power law ofα−1, corresponding to the rescaling used in figure 3,
modified byκ-dependent logarithmic corrections, which explain theκ-dependence found
in figure 3. Formo = 0, the behaviour is more complex [22]. Initially, the solutions for
all κ are characterized by zero threshold andεon = εoff = ε/2 as expected by the pattern
symmetry. However, for any finite stability exists a critical loadαp (with αp → ∞ for
κ → 0) at which a phase transition to a solution with non-zero threshold occurs, breaking
the symmetry of the patterns (εon 6= εoff ). This is caused by the fact that the zero-threshold
solution has aκ-dependent asymptotic error rate ofε∞ = 1−H(κ) > 1

2, which is strictly
larger than1

2 for any finite stability, making it advantageous to adopt the strategy of the
non-zero bias case to classify the examples deterministically forα →∞. The asymptotic
error rate is approached by a power laws of 1/α (with logarithmic corrections) for the
non-zero threshold solution as for the non-zero bias case, but of 1/

√
α (with logarithmic

corrections) for the zero threshold solution, applicable for very smallκ.

3.3. Employing results for the simple perceptron

In this section it is shown how the results for the capacity limit and the error rates of simple
perceptrons demonstrated above can be used to calculate the capacity of the considered
constructive algorithms. As an example, consider the capacity limit of a network withK

units constructed by the tiling-like algorithm for given initial output bias,mo, and stability,
κ. For convenience, the example load on the whole network and capacity of individual
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Figure 4. A symbolic capacity calculation procedure of the tiling-like algorithm called by an
all-purpose root solving routine.

perceptron units are expressed in terms ofα ≡ p/N and αc, respectively, whereas the
capacity of the whole network is defined asαKc ≡ α/K (andα1

c = αc).
Assume that the current guess of the network capacity at iterationj is αKj resulting in

an initial example load ofα1 = KαKj with output biasm1 = mo. These parameters together
with the desired stabilityκ determine the error rateε1 made by the first perceptronU1. The
example loadα2 and biasm2 of the second perceptronU2 result by simply applying the
rules of the algorithm: the loadα2 = α1, since the complete training set is used, and the
biasm2 = 1− 2ε1 (or the more natural parametrizatioñm2 = 1− m2 = 2ε1), since the
target of all examples but the erroneous ones is+1. Obviously, these parameters determine
ε2 and this procedure is repeated until the last perceptronUK which is supposed to have
reached its capacityαK = α1 for m̃K = 2εK−1. Therefore, the actual capacity limitαc for
m̃K is calculated and compared withαK : if the last perceptron is below its capacity limit,
the true capacityαKc > αKj otherwiseαKc < αKj and a root solving routine can be employed
to solve

[αc(m̃K)− αK ] = 0 (5)

as a function ofαKc . A symbolic program for the procedure called by the root solver can
then be written as outlined in figure 4.

It is now more clear, what the relevance of the results for the simple perceptron presented
in section 3.2 is. The error rate of the previous perceptron determines the output distribution
bias of the current perceptron and the curves of constant error in figure 3 are curves of
constant bias for the next generation. With each step of the algorithm, the decreased ‘bias’
m̃o leads to a reduced error rate, until the capacity limit for the current bias is larger than
the current loadα. The influence of the stability is therefore twofold. The increase in
m̃o for constantα̂c with κ (observed in figure 2) should have the effect of increasing the
normalized capacity limit,̂αKc ≡ αKc /αc, with κ of the whole network, whereas the decrease
of α̂ for fixed error withκ should have qualitatively the opposite effect.

For the upstart algorithm similar consideration are applied to yield a procedure for a
root solver that calculates the capacity of the created networks. The resulting procedures
are much more complicated and summarized in appendix C.

Note, that the numerical uncertainty in the solution of the order parameter, mainly
caused by the numerical integration inaccuracy, results in an inaccurate error rate calculation.
Propagating the upper and lower bound of the error rate in each generation separately through
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the whole network gives estimated error bars in the capacity†. Although the relative capacity
error increases with network size it never exceeded 10−4 and could therefore be neglected.

4. Numerical capacity results

Within the uncorrelated approximation, the procedures described within section 3.3 (and
appendix C) have been used to calculate the capacity of the considered constructive
algorithms. This section will roughly fall into three parts. In section 4.1 numerical capacity
results for an unbiased random mapping, usually considered in capacity calculations, will
be presented as a function ofK using the various algorithms, different stabilitiesκ, and
employing either the RS or one-step RSB ansatz. In section 4.2 biased output distributions
will be considered forκ = 0 and the different algorithms compared. This is followed by
an investigation into the capacity when an Ising weight prior is used for the individual
perceptrons instead of a spherical weight prior employed in the previous sections. The
functional behaviour of these numerical results will then be analysed for finiteK and
suggestions are made concerning the asymptotic limits of the capacity forK → ∞ in
section 5.

4.1. Capacity for unbiased outputs

Previous capacity calculation for MLPs have only investigated zero stability for unbiased
output distributions. In this section, one aim is therefore to assess the influence of
finite stability on the asymptotic functional form of the capacity limit for unbiased output
distributions. Another goal is to compare the capacity‡ between the networks built by the
different constructive algorithms considered§.

In figure 5, the capacity limit of networks constructed by the upstart II algorithm is
shown as a function of the number of hidden units for various stabilitiesκ for the uncoupled
RS (figure 5(a)) and one-step RSB (figure 5(b)) ans̈atze. Note, that the capacity curves
have been normalized byα1

c(κ) for presentational reasons. For both ansätze, one finds that
the capacity grows monotonically for small stabilities. for larger stabilities the capacity
decreases initially for smallK but increases for largerK. This non-monotonic behaviour
can be explained by the initial inefficiency of the upstart algorithm by tackling the two type
of errors with two different unit types, such that the network grows directly from one to
three units. For even larger stabilities, one finds that the capacity actually decreases in the
K →∞ limit‖.

Notice that for finite stabilityκ and large enoughK, one finds a kink in the capacity
curve due to the phase transition in the solution of the first perceptron from zero to
finite threshold, which leads to a breaking of the error symmetry and consequent network
symmetry for upstart II. The asymmetry in the error also leads to the jags in the capacity as

† This technique was compared with the change in the capacity resulting from relaxing the accuracy requirements
for the numercial integration over several order of magnitude and it was found that the error propagation method
overestimates the capacity error by about two orders of magnitude.
‡ For brevity, the capacity limit of networks constructed by an algorithm will often be referred to just as the
capacity of the algorithm. It is also only fair to emphasize that our numerical solutions have not been compared
with simulation results as the latter do not exist in the literature for the cases considered in this paper, and are
notoriously difficult to carry out, especially for high values ofK which are the focus of our study.
§ Note, that for unbiased output distributions, the two selection criteria considered for the variants of the upstart
algorithm are identical, and the two variants will therefore be referred to as upstart II and III in this section.
‖ Note that the decrease is in the capacity per weight of the networks, the capacity of the network still increases
linearly inK to leading order.
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Figure 5. The normalized capacity limit̂αKc ≡ αKc /α1
c (whereα1

c(κ) is the capacity of a simple
perceptron) of networks constructed by upstart II is shown as a function of the number of hidden
unitsK for several stabilitiesκ (see the legend) for the uncoupled (a) RS and (b) one-step RSB
ans̈atze. The RS capacity violates the superimposed MD bound for small stabilities and large
enoughK in the range of hidden units investigated.

the two types of units cease to saturate simultaneously. Furthermore, due to the increasingly
deterministic classification of the first perceptron (for an explanation see section 3.2),
wrongly-off errors become increasingly more common than wrongly-on errors, resulting
in the upstart II algorithm constructing much moreU+ thanU− nodes†. In fact, for certain
stabilities, one finds that aU− node can actually vanish before a newU+ node needs to be
created, when increasing the loadα on the first perceptron, leading to a decrease in total
network size (e.g.κ = 0.3 for the one-step RSB ansatz, where the decrease in network size
atK = 20 is apparent).

In comparison with the bounds and capacity limits known for fixed-architecture MLPs,
one finds that the capacity curves for networks built by upstart II violate the MD bound
within the uncoupled RS ansatz for large enough number of hidden units; in the curve shown
the slope of the RS curve is larger than the MD bound forK ≈ 80‡. However, within
the uncoupled one-step RSB ansatz the MD bound is not saturated. Although, the one-step
RSB results initially seem to predict a logarithmic increase of the capacity§ αKc ∝ logK for
small stabilities and network sizes 20/ K / 150 as reported in preliminary work [64], this
functional description is inadequate for larger stabilities and/or larger network sizes and a
detailed analysis will be carried out in section 5.

In figure 6, the capacity resulting from the different constructive algorithms considered
is investigated for a few stabilities. For both small and large stabilities, shown in figures 6(a)
and (b) respectively, one finds that the tiling-like algorithm has a larger capacity for small
network size and for small stabilities than both variants of the upstart algorithm, which may
be mainly attributed to the fact that the tiling-like algorithm attempts to correct both error

† Or vice versa due to random symmetry breaking in the first perceptron.
‡ The MD bound is an asymptotic bound as it relies of Stirling’s approximation, we therefore consider the violation
of the slope of the MD bound as the significant indication rather than the actual capacity value itself (although
we also find an absolute violation for very largeK). Within RS the slope of the tiling-like and the upstart III
algorithms violates the MD bound aboveK ≈ 20 andK ≈ 50, respectively. Note that this result only holds
for the range ofK 6 4000 investigated since the asymptotic values could not be calculated self-consistently in
section 5.
§ The estimated prefactors are significantly smaller than the(log 2)−1 of the MD bound.
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Figure 6. The capacity limitαKc of networks constructed by the upstart II (Aup
II ), upstart III

(Aup
III ), and tiling-like (At) algorithms is shown as a function of the number of hidden unitsK

for several stabilities: (a) κ = 0 andκ = 0.15; (b) κ = 0.5 andκ = 0.7.

types simultaneously.
However, asymptotically the tiling-like algorithm is less efficient than both variants of

the upstart algorithm for larger stabilities, but even for small stabilities the capacity curves
for upstart networks (in particular for upstart III) approach those of the tiling-like network.
This behaviour may be explained by the fact that the upstart algorithm eliminates part of
the original training data in the training set of consecutive units.

This argument can also explain the fact that upstart III is more efficient than upstart II for
all stabilities as it eliminates in general more patterns from the training set. This advantage,
however, becomes less significant for largeκ, where almost all errors are wrongly-off and
consequently almost all units are of theU+ type beyond the phase transition of the first
perceptron. The fraction of wrongly-on errors eliminated from the training sets ofU+ units
is therefore small and the two versions behave similarly.

4.2. Capacity for biased outputs and zero stability

Similarly to exploring finite stabilities as above, it is interesting to address the influence of
biased output distributions on the capacity limit of MLPs for which no results are a known in
the case of fixed architectures. Due to the symmetry it is sufficient to studymo < 0 w.l.o.g.
for mo > 0 the r̂oles of of wrongly-on and wrongly-off errors reverse and consequently the
rôles ofU− andU+ units for the upstart algorithm. Again, we would like to compare the
capacity between the different constructive algorithms considered and for the variants of
the upstart algorithm also the criteria selecting the next unit type.

In figure 7(a), the capacity limit of networks constructed by the upstart IIb algorithm
is shown as a function of the number of hidden units for various ‘biases’m̃o ≡ 1− |mo|
for the uncoupled one-step RSB ansatz. Again, the capacity curves have been normalized
by α1

c(m̃o) for presentational reasons. Although, the normalized capacity limit for biased
output distributions is initially larger than less biased or unbiased output distribution for
K > 6, one finds asymptotically (inK) that the (normalized) slope† seems to decrease for
increasing bias (see below), suggesting that the constructive algorithms are less efficient
(when compared with a single perceptron) in exploiting the bias of the output distribution.

† For larger bias the actual slope is still much larger due to the normalization factorα1
c(m̃o) that scales with (4).
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Figure 7. (a) The normalized capacity limit̂αKc ≡ αKc /α
1
c (where α1

c(m̃o) is the capacity
of a simple perceptron) of networks constructed by upstart IIb is shown as a function of the
number of hidden unitsK for several ‘biases’m̃o (see the legend) for the uncoupled one-step
RSB ansatz. (b) To highlight the influence of the selection criteria, the difference between the
normalized capacity limits1α̂Kc = α̂Kc (Aup

IIa)− α̂Kc (Aup
IIb) of the two selection criteria is shown

for m̃o = 0.5 andm̃o = 0.1, suggesting that on average upstart IIa outperforms upstart IIb.

The curves are jagged for finite but small bias, since both unit types are constructed and the
units do not saturate simultaneously. For very large bias, the larger example class is almost
deterministically classified correctly and only one type of unit is constructed to correctly
classify the smaller class, again leading to smooth capacity curves.

The influence of the unit creation criterion is therefore only important for small bias
and its influence on the capacity limit is depicted in figure 7(b) and shows that upstart IIa
is slightly more efficient than upstart IIb. A more detailed examination of the constructed
networks shows that both criteria are not ideal. For unbiased output distribution, one finds
that after the breaking of the network symmetry (i.e. beyond the phase transition of the
solution of the first perceptron for finiteκ), the algorithm initially only createsU+ units
until both error types have the same frequency after which it alters between the unit types.
We find this creation scheme the most natural and believe that it is probably also optimal.
For finite output bias, criterion (a), using the number of errors as the decision criterion,
buildsU− units too early into the network, i.e. instead of alternating between unit types at
the end theU− units are dispersed less frequently over a wider unit number range. This
may be considered a wasteful use ofU− units.

Criterion (b), basing its selection on the number of errors made normalized by the size
of the its target class, alleviates this problem leading to networks with fewerU− units for
fixed total network size, however, in this case we find that the creation ofU− units tends to
be left too late, leading to extraU+ units that have to be created at the very end to correct
the few wrongly-on errors theU− units make. In fact, for both creation criteria and for
the last few units, we find sometimes that the algorithm actually decides on building a unit
type which is below its capacity limit whereas the other unit type is above its capacity, i.e.
criterion (a) selects aU− although it should have selected aU+ and vice versa for criterion
(b)†.

Both criteria are therefore not optimal, criterion (a) selectsU− units too early and

† To cater for those few cases, we have decided to amend both criteria such that the algorithm always selects a
unit above its capacity limit first.
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Figure 8. The influence of the constructive algorithmA is assessed by plotting the difference
between the normalized capacity limits1α̂Kc = α̂Kc (A) − α̂Kc (Aup

IIb) for (a) whereA is the
upstart IIIb and (b) whereA is the tiling-like algorithm and several bias values (see the legend).

criterion (b) selectsU− units to late. A better criterion should therefore compromise
somewhat between these two; however, we were not able to devise a more suitable objective
criterion.

In figure 8, upstart IIb is compared with upstart IIIb and the tiling-like algorithm. For
the versions of the upstart algorithm (figure 8(a)), the difference in capacity is very small
and decays rapidly for increasing bias, since the difference in the training sets becomes
negligible as the fraction of wrongly-on errors goes to zero and only oneU− unit is created
in all network sizes investigated.

The difference of the upstart IIb to the tiling-like capacity (figure 8(b)) is significant
for small networks, due to the separate treatment of each error type. For large bias, the
tiling-like capacity approaches the upstart IIb capacity rapidly, as almost all errors become
wrongly-off and only fewU− units are created, consequently leading to almost identical
training sets and networks besides the extraU− unit built by the upstart algorithm.

This should be contrasted to large stabilitiesκ, where the upstart algorithm also
constructs almost entirely a single unit type; however, in this case, the difference in the
training sets between the upstart and tiling-like algorithm does not vanish asymptotically
in κ. The fraction of correctly-on patterns excluded from the training set of allU+ units
in the upstart algorithm approaches1

2 of all patterns for later units in the unbiased output
distribution case, whereas this fraction approachesm̃o/2 in the biased output distribution
case—vanishing for̃mo→ 0.

For small bias, the picture is less clear. The tiling-like capacity seems to decay to a
value which has approximately a constant difference to the upstart capacity, although we
have found for zero bias, that at least the upstart III capacity curve approaches that of the
tiling-like algorithm. This difference may be explained by the suboptimality of both upstart
selection criteria formo 6= 0.

4.3. Capacity for the Ising perceptron

Up to now, we have only considered the constructive algorithms using spherical perceptron
with real valued weights of arbitrary accuracy as their basic building block. In realistic
implementations weights are only stored up to a certain accuracy and especially for VLSI
implementations Ising (binary{−1, 1}) weights are an often considered alternative. In this
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Figure 9. This figure illustrates the differences when using the Ising rather than the spherical
perceptron as the basic building block of the constructive algorithms. (a) The normalized
capacity limitα̂Kc ≡ αKc /α1

c for networks constructed by upstart II is shown as a function of the
number of hidden unitsK for several stabilitiesκ (from top to bottomκ = 0, 0.02, 0.05, 0.1,
0.15, 0.2, 0.3, 0.5, 0.7, 1.0 and 2.0, as in figure 5) for the uncoupled one-step RSB ansatz. (b)
The capacity limitαKc of networks constructed by the upstart II (Aup

II ), upstart III (Aup
III ), and

tiling-like (At) algorithms is shown as a function of the number of hidden unitsK for κ = 0.

section, we therefore investigate the influence of an Ising weight prior for the perceptron,
usually referred to as theIsing perceptron(in contrast to thespherical perceptron with
real weights), on the capacity of the resulting networks. For brevity we will only consider
unbiased output distributions and mainly networks constructed by the upstart II algorithm.

In figure 9(a) the normalized capacity limit of networks constructed by the upstart II
algorithm is shown as a function of the number of hidden units for various stabilitiesκ for
the uncoupled one-step RSB ansatz. As for the spherical perceptron, we find that not only
the capacity but also the slope of the normalized capacity curves decrease with increasing
stability. In comparison with the spherical perceptron, the normalized capacity is, however,
much smaller; in fact, for all stabilities the normalized capacity decreases initially for small
K. Although the capacity increases for very smallκ for largerK, the curves flatten out
asymptotically. For largerκ, the decrease of̂αKc is only abated briefly due to the phase
transition in the solution of the first perceptron (which occurs for much smallerα in the Ising
perceptron), leading to the already observed kink in the capacity curves and the possibility
of a decrease of the number of units for increasing loadα.

In figure 9(b) the dependence of the capacity curves on the constructive algorithm is
investigated forκ = 0. As for small stability in the spherical perceptron, the tiling-like
algorithm has the largest capacity for the range of hidden units investigated. Whereas, the
upstart III capacity closes the gap in the capacity to the tiling-like algorithm, the upstart II
algorithm seems to be asymptotically less efficient for this stability.

5. Analysis of the capacity

Although the visual inspection of the capacity curves already reveals some information
about the efficiency of the considered constructive algorithms as a function ofK andκ, it
would be more useful to be able to model the capacity curves at least for largeK with a
reasonable functional form.

As mentioned above, a functional form of the capacity limitαKc linear in logK cannot fit
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Figure 10. The power-law relationship betweenαKc and logK (6) is shown to hold
approximately for all considered constructive algorithms [upstart II (Aup

II ), upstart III (Aup
III ),

and tiling-like (At)] for κ = 0 and (a) RS; (b) one-step RSB.

the curves adequately for largeκ and/orK. Forκ = 0 and unbiased output distributions, the
capacity results for committee and parity machines within the replica framework [13, 19–21]
yield power laws in logK

αKc ' c[logK]n (6)

with n = 1
2 and n = 1 respectively. This suggests that power laws may hold also for

constructive algorithms at least forκ = 0 andmo = 0 which we will investigate first in this
section. Later, we will extend our analysis to finitemo and finiteκ.

5.1. Zero stability and unbiased output distributions

In figure 10, the power-law ansatz is scrutinized for the capacity curves of all considered
algorithms for both RS and one-step RSB, by plottingαKc versus logK on a log–log scale.
We find that the ansatz is reasonable for both cases, although the slope for one-step RSB
drops slightly for larger logK. The determination of accurate exponentsn (which are
arguably more relevant than the prefactorc), however, is difficult for two reasons. As
the power law is in logK, the range for fitting the exponent is relatively short, since
the calculation of the capacity is computationally quite expensive†, making it impossible to
calculate capacities over several decades of logK. Furthermore, the power-law behaviour in
logK seems impure, as locally (i.e. around a particularK value) calculated exponent values
n(K) exhibit small constant shifts. This may, for example, be caused by superimposed
corrections decaying in log(logK). This shift may be a cumulative effect of the error
calculations propagated through the perceptrons as well as of the capacity calculation for
the last perceptron(s).

These difficulties will become more apparent in the course of this analysis. The
asymptotically derived exponent values should therefore be seen as a local snapshot. Bearing
this in mind, finiteK measurementsn(K) were derived using a moving regression window.
The resulting curve ofn(K) was then either averaged for the largestK available resulting
in a local mean approximationnl or extrapolated to 1/K → 0 using linear and quadratic

† For example, the calculation of the capacity limit for the tiling-like algorithm to up toK = 300 takes
approximately 2 days (10 min) of CPU on a state-of-the-art workstation within the one-step RSB (RS) ansatz.
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Table 2. The estimated power-law exponentsnl andne for κ = 0, the considered algorithms, and
several replica ansätze for two values ofK in order to highlight the occurance of the systematic
errors.

RS

A Ka nl nb
e nl ne

300 0.554(2) 0.48(2) 1.291(0) 1.279(0)Aup
II 750 0.479(1) 0.36(2) 1.264(0) 1.243(0)

300 0.602(1) 0.54(1) 1.305(0) 1.290(0)Aup
III 450 0.557(1) 0.47(1) 1.272(0) 1.247(0)

300 0.468(1) 0.36(3) 1.174(0) 1.167(0)At
450 0.428(1) 0.31(2) 1.158(0) 1.145(0)

a The numbers given forK apply to one-step RSB; for RSK = 1000 andK = 4000 were used
instead (lower and upper limit respectively).
b The error in the exponents is usually given for the leading digit in brackets only, i.e. 0.49(2)
is equivalent to 0.49± 0.02. The error is given as (0) when smaller than the last significant
digits given.

regression models yieldingne. This extrapolated estimatene should be seen as an indication
in which directionnl is moving rather than a true extrapolation ton for K →∞.

These calculations still depend on the length of the regression window and the number
of resultingn(K) values included in the mean and extrapolated estimates, due to the noisy
capacity curves for the upstart algorithms and the small constant shifts inn(K). To minimize
these effects, an average was taken over different lengths of the regression windows for local
n(K) values as well the number ofn(K) values included in the extrapolation. The values
of nl andne were then determined by a weighted mean of the individual resulting models
by their respective likelihoods.

The final results fornl andne are shown in table 2 for the various constructive algorithms
and both RS and one-step RSB ansätze for the spherical perceptron. For this case, the power-
law exponents were calculated once for the usual range of hidden units explored (K = 300
for one-step RSB andK = 1000 for RS) and in most cases re-evaluated for largerK

(4506 K 6 750 for one-step RSB andK = 4000 for RS) in order to verify the size of the
systematic errors.

For all algorithms, we observe that the resulting extrapolated estimatene is smaller
than the local meannl , suggesting thatnl could be an upper bound (practical rather than
rigorous) to the true exponentn. As expected, the extrapolated estimatesne themselves are
not very accurate; the re-evaluated local meannl for the largerK value shows a strong shift
and is in many cases smaller than the extrapolationne for smallerK. It may be argued that
this is due to the extrapolation carried out in 1/K rather than in 1/ logK, however, such
an extrapolation is not advisable within the values ofK explored. From table 2, we can
therefore conclude that theK values explored are not in the asymptotic regime.

Comparing the exponents between the different algorithm may suggest that both upstart
algorithms are asymptotically more efficient than the tiling-like algorithm and upstart III
outperforms upstart II, with the reservation that the large finite size effects may undermine
this observation. Furthermore, one can speculate upon whether the exponentsn for RS are
asymptotically larger than 1, i.e. violate the MD bound, as their finiteK estimates suggest.

Finally, note that the exponents were calculated under the assumption of subsequent
perceptrons being uncorrelated and the effect of correlation (and also higher RSB step) may
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Figure 11. (a) The power-law exponent estimatesnl andne for the capacity limitαKc ∝ [logK]n

are shown as a function of the ‘bias’̃mo ≡ 1− |mo| for the various algorithms (upstart IIa
(Aup

IIa), upstart IIb (Aup
IIb ),upstart IIIb (Aup

IIIb ), and tiling-like (At)) for the uncoupled one-step
RSB ansatz. (b) The corresponding prefactorcl and ce, where the values were adjusted by
the dominant linear scaling iñmo

−1. The local values were determined forK = 300 and are
denoted by filled symbols, whereas the extrapolation estimates are represented by open symbols
(see the legend). The estimation error for all estimates does roughly not exceed more than five
times the size of the symbols, and is about their size in many cases, especially for smallm̃o.

cause a shift to smaller (local)n values, similarly to the transition from RS to one-step
RSB. Since RSB in the single perceptron is believed to be more relevant than correlations,
this correction should, however, be significantly smaller and likely negligible in comparison
with finite size effects inK.

One way to probe further into the asymptotic regime for fixedK is by studying large
bias. Form̃o → 0, the relevantα values are much larger, and the error rates and the
capacity of most units are closer to their asymptotic expansions (see [22] and (4)).

5.2. Analysis for biased outputs and zero stability

To assess the influence of the output bias more objectively and also to gain some qualitative
insight into the likely behaviour for much largerK in the more interesting case of one-step
RSB, we have calculatednl for K = 300 andne along the same lines as above and present
the results in figure 11(a).

For all algorithms, we find thatn initially decreases with increasing biasmo, before both
estimates level off. This result is inconsistent sincen must either be constant or increase
with mo, otherwise the capacity curve for a smaller bias would eventually cross that for a
larger bias. This result could have been anticipated from the decreasing slope for large bias
observed in the raw capacity curve (see figure 7(a)). Evidently, this contradiction causes
no actual violation for any practical range of hidden units†, since the prefactor estimatesc
scale to leading order‡ with c ∝ m̃o

−1 (see figure 11(b)).
The question remains open whether the asymptotic exponentsn will have any functional

dependence onmo. If n were independent ofmo, n would also have to be independent of the

† For example, for the upstart III algorithm the capacity curve form̃o = 1 were to cross the one for̃mo = 10−5

for K ≈ exp(1017).
‡ Note that the logarithmic correction to this leading behaviour forc resembles the result for the perceptron in
(4).
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considered constructive algorithms for any bias since form̃o → 0 their differences vanish
as explained in section 4.2. The performance of the constructive algorithms studied would
then only vary in the prefactor, in contrast to the case of fixed architectures wheren can be
architecture dependent (see (6)).

Finally, it is worthwile illustrating how such inconsistency can arise. Consider the
asymptotics of the perceptron capacity form̃o→ 0, for which an asymptotic expansion can
be derived explicitly (4). A numerical determination of the leading asymptotic behaviour
in log(m̃o

−1) would require extremely small̃mo values. For theκ-corrections to become
negligible

√
log(m̃o

−1)� 2
√

2κ, i.e. representing the inequality as a small factorδ requires
m̃o ≈ exp(−8δ2κ2). The trueκ-independent exponent (−1) is therefore numerically almost
impossible to predict. In fact, for any small but finitẽmo, a numerical evaluation of the
exponent for finiteκ is always strictly larger than−1 and increasing withκ. At face
value, this result would also inconsistently predict that asymptotically the capacity curves
for largerκ cross those of smallerκ. Considering, that such numerical difficulties already
mar asymptotic results for a simple perceptron, it may be of no surprise that consistent and
accurate asymptotic results could not be extracted in the case studied here.

5.3. Analysis for finite stability

Although we have shown in the previous section that consistent power-law exponents cannot
be determined for the range of hidden units available, it is nevertheless interesting to study
the local exponents for finite stabilities to gain a qualitative insight.

For finite stability, the fit of a power-law model on the capacity curves themselves
deteriorates for increasing stability. This is mainly due to the non-negligible corrections
to the asymptotic capacity limit of the last perceptron as described above. For example,
if a power-law model is fit to the capacity limit of a simple perceptron as a function of
log(m̃o

−1) for κ = 2 and the range of̃mo
−1 relevant for the bias of the last perceptron within

the range of hidden units explored, the estimated exponent is around− 1
2 and increasing

systematically towards the correct value−1.
In order to be able to extend the analysis to finite stability, it is therefore necessary to

separate the cumulative effect of the errors and the capacity of the last perceptron. Consider,
for example the tiling-like algorithm. The capacity of the complete network in terms of the
capacity of the last perceptron is according to (5)

αKc =
1

K
αc(m̃K). (7)

Sincem̃K → 0 for K →∞, one can use the asymptotic expansion (4) ofαc to express the
capacity solely in terms of̃mK (to leading order for̃mK → 0)

αKc '
1

K

1

m̃K log(m̃−1
K )

. (8)

For m̃K we make the (numerically justified) ansatz

m̃K ' b

K[logK]l
(9)

with l = l(κ,K) andb = b(κ,K) being weakly dependent onK. The final result for the
capacity then becomes to leading order

αKc '
1

b
[log(K)]l−1 ≡ c̃[log(K)]ñ (10)
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Figure 12. (a) The power-law relationship betweeñmKK and logK (9) is shown to hold
approximately forκ = 2 and RS (and all constructive algorithms). Similar results can be
obtained for other stabilities and one-step RSB. (b) The exponent values for upstart II extracted
either from the capacity curve itself (n) or from the bias on the last unit (ñ) are very similar
for small stability confirming that the two methods are equally suited in this regime. For
larger stability the two approaches differ mainly due to the slowly decaying corrections to the
asymptotic capacity limit of the last perceptron form̃o→ 0 (see the text).

where the exponent̃n (and the prefactor̃c) are now purely determined from the error
calculation avoiding the slowly vanishing terms in the perceptron capacity (4) for finiteκ.
For the variants of the upstart algorithm similar considerations can be applied, leading
asymptotically to the same equation for the exponentn, but with a prefactor which
asymptotically depends on the initial output-distribution bias, the exact derivation of which
can be found in appendix D.

The adequacy of this approach is scrutinized in figure 12(a), where (9) is shown to hold
well for κ = 2 and RS, by plotting̃mKK versus logK on a log–log scale for all considered
algorithms. In figure 12(b), the differences between the RS power-law exponent estimates
resulting from the capacity curve itself (n) and indirectly via the bias on the last unit (ñ)
are depicted for upstart II.

For small stabilityκ, the two estimates almost coincide. The small deviations can be
explained by two factors. First, higher order terms in the expansion of the last perceptron’s
capacity limit have been neglected in (8). Second, the indirect calculation of the exponent
value suffers from some systematic errors in the case of the upstart algorithm. For small
finite stabilities the capacity limit can be reached purely due to a change in architecture
without either of the units ever being very close to their respective saturation limits.
Furthermore, the capacity as a function ofm̃K has further corrections which only strictly
vanish for m̃K = 0 (see appendix D). The re-evaluated exponents are explicitly listed
in table 3 for κ = 0 to allow a comparison with the original values table 2. Studying
both tables, the largest systematic differences can be found in the case of the tiling-like
algorithm†, whereas the deviations for the upstart algorithm are very small, which may
be explained by the systematic corrections cancelling neglected higher order terms in the
capacity. Again, these differences show, that we cannot expect quantitatively accurate
results.

Returning to figure 12(b), for large stabilityκ, the n estimates differ significantly
between the calculation methods. The difference approximately corresponds to the expected

† The difference betweenn and ñ of around 0.08–0.1 correspond almost exactly to the expected finitem̃o

corrections to the asymptotic perceptron capacity limit forκ = 0 (of O(log[log(m̃o
−1)])).
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Table 3. The estimated power-law exponentsnl andne for κ = 0, the considered algorithms, and
several replica ansätze for two values ofK in order to highlight the occurance of the systematic
errors.

RSB RS IRSB

A Ka nl ne nl ne nl ne

300 0.583(1) 0.49(2) 1.305(0) 1.271(5)−0.014(4) −0.112(6)Aup
II 750 0.495(1) 0.36(2) 1.258(0) 1.225(0)−0.070(0) −0.084(1)

300 0.622(2) 0.53(2) 1.312(0) 1.276(6) 0.035(2)−0.035(17)Aup
III 450 0.571(1) 0.47(1) 1.259(0) 1.223(1)−0.004(1) −0.064(2)

300 0.367(1) 0.29(1) 1.079(0) 1.070(0)−0.128(0) −0.152(1)At
450 0.330(1) 0.23(2) 1.062(0) 1.049(0)−0.136(0) −0.147(1)

a The numbers given forK apply to one-step RSB in the case of the spherical perceptron.
For RSK = 1000 andK = 4000 were used as before and for the Ising perceptron the larger
network sizes wereK = 1000 forAup

II andK = 500 forAup
III andAt.
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Figure 13. The power-law exponent estimatesñl andñe for the capacity limitαKc ∝ [logK]n is
shown as a function of the stabilityκ for (a) RS and (b) one-step RSB for the various algorithms
(upstart II (Aup

II ), upstart III (Aup
III ), and tiling-like (At)). The local values̃nl were determined for

K = 1000 for RS and for 1506 K 6 300 for one-step RSB and are denoted by filled symbols,
whereas the extrapolation estimateñe are represented by open symbols (see the legend). The
estimation error forñl and ñe does roughly not exceed more than three times the size of the
symbols, and is about their size in many cases especially for RS or one-step RSB and very
largeκ.

correction from neglecting the slowly decaying systematic shifts of the last perceptrons
asymptotic (̃mK → 0) capacity for finiteκ. For large stabilities, where the slope of the
raw capacity curves becomes very small or even changes sign, any reliable exponent cannot
be determined from the capacity curve itself, which can be seen by the divergingne and
nl estimates forκ = 1. Below, we will therefore use the indirect method of determining
estimates forn. Unfortunately, ñl is not a local estimate ofn and therefore cannot be
compared with the raw capacity curve in section 4.

Keeping these restrictions in mind, the behaviour of the power-law exponent estimatesñl

and ñe as a function of the stabilityκ is shown in figure 13 for all considered constructive
algorithms within the RS (figure 13(a)) and one-step RSB (figure 13(b)) ansatz. In all
cases the behaviour of̃n mirrors the qualitative observations made from figures 5 and 6;
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the exponent estimates ofn decrease monotonically for increasing stabilityκ and above a
critical stabilityκc, the slope becomes negative. For large stabilities, the power-law exponent
estimates seem to converge to a finite limitñ(κ → ∞). It is a very interesting question,
whether the shape of the functional dependence ofn on κ is preserved forK →∞.

Within the RS ansatz, depicted in figure 13(a), the estimated exponentñ > 1 for small
stabilities and all algorithms suggesting that the MD bound is violated. This is in contrast
to the original work for the tiling-like algorithm [62], wheren = 1 was reported within
the RS ansatz based on smaller network sizes. However, it is not entirely clear whether
n > 1 actually holds asymptotically. It is worth mentioning that the simple RS treatment in
the Gardner-volume calculation for the committee machine [14, 15] predicts an asymptotic
capacity limit proportional to

√
K instead of the correct

√
logK [19–21], i.e. predictsK

rather than logK as the relevant quantity. The RS ansatz in the present case seems to lead
at least to the correct scaling with [logK]n.

For the one-step RSB ansatz shown in figure 13(b), the picture is similar, with the
noticeable difference of a shift ofn such thatn < 1 for κ = 0. Note that for one-step RSB the
errors for the individual exponent estimates are much larger since 1506 K 6 300 instead
of K > 1000 for RS. Especially large error bars are obtained forκ ≈ 0.1 and upstart II,
where the kink in the curve can be explained by the phase transition at 1006 K 6 300.
Note that for upstart III the estimates ofn (see also both tables 2 and 3) are close to1

2,
which would suggest that networks constructed by the upstart III algorithm have a similar
performance as the committee machine. Since the committee machine uses unconstrained
optimization of the internal representations, this may be seen as a further indication that the
availablen estimates are significantly too large.

It would further be interesting to compare the performance of the three algorithms.
Although, we find that thẽn estimates somewhat mirror the observations made from the
visual inspection of the capacity curves in section 4.1, a significant difference is that the
tiling-like algorithm is estimated to perform asymptotically worse than both upstart versions.
However, due to the larger finite size effects and the systematic errors for the exponents of
the upstart algorithm, this may not hold asymptotically. Furthermore, this calculation does
not account for the influence of correlations between the perceptrons onn. We expect these
corrections to be larger for the upstart algorithm.

Note that the difference betweenñl andñe approximately decreases monotonically with
κ, althoughK was at least decreased for one-step RSB fromK = 300 forκ = 0 toK = 150
for κ = 2. We have identified two possible causes. First, then itself may have a finite
limit n(κ →∞). Second, for large stability the asymptotic error regime of the individual
perceptrons (where the error approaches the asymptotic error in a simple power law with
logarithmic corrections) is reached faster, which may dampen higher order corrections to
the measured power law iñmK .

In conclusion, we believe that it is plausible to assume thatñl as well asñe constitute
practical upper bounds forn(κ). For smaller stabilities significant corrections are to be
expected as has already been highlighted by the inconsistency found for non-zero bias. For
increasing stabilities, these bounds become arguably tighter.

5.4. Analysis for the Ising perceptron

In this section, we briefly assess whether the observations made for the spherical perceptron
also hold for the Ising perceptron. In figure 14 both estimates of the power-law exponent,ñl

and ñe for upstart II, show the same characteristic decay to a finite limit for large stability.
The main difference is that the curves are shifted to much smallern values. In fact for all
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Figure 14. For upstart II and the uncoupled one-step RSB ansatz, employing the Ising perceptron
as the basic building block results iñnl and ñe being shifted to smaller values for all stabilities
κ. The local values̃nl were determined for 1506 K 6 300 and are denoted by filled circles,
whereas their extrapolatioñne are represented by open circles (see the legend).

algorithms (see also table 3) bothñl and ñe are predicted to be slightly smaller than 0 for
large enoughK, i.e. asymptotically the capacity is expected to decrease for all stabilities.

For the Ising perceptron, the error in theñ(κ) estimates is especially large forκ ≈ 0.08,
where the kink in the capacity for relatively largeK makes the measurements ofñ more
difficult. For large κ, the non-monotonic behaviour may be an artefact caused by the
decrease ofK with κ.

6. Summary and conclusions

The main thrust of this paper has been the study of the capacity limit of MLPs built
by constructive algorithms. Here we have concentrated on two algorithms, a tiling-like
algorithm (At) for a parity machine [62], inspired by the tiling algorithm [25], and variants
of the upstart algorithm [28] (Aup

IIa, Aup
IIb, Aup

IIIa, andAup
IIIb ) which are accessible to a statistical

mechanics framework. The variants of the upstart algorithm differ in the make-up of the
training set (II,III) and in the selection criteria (a,b) used for the creation of new units,
allowing us to assess the impact of small changes in the algorithm to the resulting capacity.

In order to calculate their capacity explicitly, the approximation has been made that
the quenched average over the training sets can be taken separately for each perceptron
generated by the algorithms, effectively assuming that the perceptrons are uncorrelated. This
approximation allows the capacity being calculated employing results for simple perceptrons
derived within a replica framework. The validity of this ‘uncoupled’ approximation has been
assessed within a RS ansatz for the case of two perceptrons being generated in successive
steps of the algorithms. The corrections to the capacity (and the errors made above
saturation) due to the correlations turn out to be in most cases negligible in comparison
with the effect of RSB in the individual perceptrons, suggesting that the results derived are
a good approximation.

For the case of zero stability and unbiased output distributions for which exact
asymptotic capacity results are known for the parity (αKc ∝ logK) [13] and the committee
machine (αKc ∝

√
logK) [19–21], we find that all constructive algorithm considered are
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likely to exhibit a power-law behaviour† in logK, αKc ' c[logK]n. The power-law ansatz
modifies preliminary results [64] and earlier work [62] which proposed a simpler linear law
in logK.

Visual inspection of the capacity curves suggest that the prefactorc is dependent on
the constructive algorithm employed. For a more objective analysis, local estimates of
the exponentn(K) for finite K have been obtained, providing a reasonable fit for the
capacity curves and then extrapolated to 1/K → 0. However, two sources for systematic
errors were identified. First and probably most important, due to the small range of logK

values accessible to such an approach, significant finiteK effects were encountered. A
re-estimation ofn using larger networks shows that then estimates systematically shift to
smaller values. Furthermore, theK values explored are too small to make the extrapolation
accurate—the local estimate ofn at a largerK value were often found to be significantly
smaller than the extrapolation from smallerK values to 1/K → 0. Second, further RSB
and the ignored correlation between perceptrons should lead to systematic shifts ofn to
smaller values—although the magnitude of these corrections is unknown, they should be
significantly smaller than the corrections going from the uncoupled RS to one-step RSB.
In summary, the exponent values cannot be estimated reliably enough to decide whethern

is algorithm dependent. Nevertheless, the extracted exponents may still provide practical
upper bounds for the true exponents since the extrapolated values were in all cases smaller
than their corresponding local estimates.

Within these restrictions, the exponentn for the RS ansatz has been estimated to be
greater than 1 for all constructive algorithms within theK values studied, which would
violate the MD bound [7]. If this violation holds asymptotically, it should be compared
with the failure of the RS ansatz in fixed architecture cases [14, 15], where power laws in
K instead of logK are predicted.

For the uncoupled one-step RSB ansatz, we find 0.23/ n / 0.47 for various estimation
methods and constructive algorithms. Especially the result for the upstart III algorithm
predicting values close to12 (the exponent for the committee machine using unconstrained
optimization) seems to confirm that these finiteK predictions are too optimistic.

This work has furthermore extended the study of the capacity limit to finite stabilities
and biased output distributions, issues which, to our knowledge, have not been addressed
previously for multilayer networks. In both cases, the most reasonable functional form of
the capacity limit remainsαKc ' c[logK]n for largeK and the constructive algorithms
studied.

In the case of biased output distributions (but zero stability), the limitations of the
validity of the extracted exponents have been made more apparent as no consistentn values
could be determined. Theoreticallyn must either increase or remain constant formo→ 1;
our numerical results, however, suggest otherwise. This contradiction may be explained by
the fact that networks are pushed further into the asymptotic error and capacity regimes
for increasing bias, increasing the ‘effective’K value. The estimated exponents for large
mo may therefore provide a tighter practical upper bound for the true exponents than could
be achieved for zero output bias. It remains an interesting open question whether the true
exponentn is a function ofmo or a constant. Constantn implies that the exponent must
also be independent of the constructive algorithms studied since it can be shown that they
become equivalent in themo → 1 limit. A visual inspection for finiteK values relevant
in practice reveals some performance difference between the algorithms for small but finite

† Although it may be argued that the size ofK explored does not allow us to rule out any other functional ansätze,
a power-law was the only simple functional form which held reasonably across all cases studied.
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bias. The tiling-like algorithm outperforms both upstart variants, which is partly due to the
fact that only suboptimal unit creation selection criteria could be identified for the upstart
algorithm.

For finite stabilityκ but unbiased output distributions, we find that then(κ) estimates
decay monotonically inκ for all algorithms to finite limitsn(κ → ∞). For both RS and
one-step RSB, we find that for stabilities beyond a ‘critical’ stabilityκc (defined by aK
independent constant capacity for largeK) the capacity (per network weight) decreases
asymptotically (as a function ofK). This effect has also been observed from a visual
inspection of the capacity curves, however, the analysis suggests that the critical stability
may asymptotically be much smaller than anticipated from the curves themselves. For the
Ising perceptron (and one-step RSB), then estimates are smaller than 0 for all stabilities,
whereas numerically we find this transition for small but finite stability for theK values
explored.

In all cases, it is of considerable interest whether the true exponentn is dependent on
the stabilityκ. Within the limitations of our analysis this question cannot be answered with
certainty. However, it may be argued that, although then estimates themselves are not
accurate, the generic shape of the dependence betweenn estimates andκ has consistently
carried over across different perceptron weight models and replica ansätze, making a stability
dependent exponent a reasonable conjecture.

Of further interest is whether the exponentn is dependent on the constructive algorithm
employed analogous to the functional dependence ofn on the architecture type found
for conventional networks. Comparing the various constructive algorithms for allκ, the
estimates predict consistentlyn(Aup

III ) > n(Aup
II ) > n(At), suggesting that the upstart

algorithm is asymptotically more efficient. However, this result completely neglects the
issue of the size of systematic errors in then estimates, which are considerably larger for the
upstart algorithm. Especially for small stability, the difference between then estimates for
the tiling-like and upstart algorithms seem grossly exaggerated considering the numerical
results. The above discussion of this issue for large bias gives also some credit to the
conjecture that the performance difference between (the considered) constructive algorithms
may lead asymptotically only to algorithm (and stability) dependent prefactors.

For the prefactors, the numerical capacity results predict, that upstart III always
outperforms upstart II. This performance difference is caused by the fact that the design
of upstart III allows for the elimination of more training patterns from the training set
of units constructed consecutively (although this difference vanishes forκ → ∞). The
comparison between upstart and tiling-like algorithm is less straightforward. For small
stability the tiling-like capacity remains above both upstart capacities for allK values and
calculation ans̈atze (RS, RSB, IRSB) studied, although the upstart III capacity closes the
gap for increasingK. For larger stability, both upstart algorithms exhibit a higher capacity
than the tiling-like algorithm for large enoughK. This behaviour reflects two competing
effects. The design of the upstart algorithm includes pattern elimination for latter units
(increasing its efficiency) but also features the creation of specialized units correcting only
one error type (decreasing its efficiency).

In conclusion, we believe it is reasonable to assume that all considered constructive
algorithm use their hidden units less efficiently than a fixed architecture multilayer network
with unconstrained optimization. This is due to the fact that the constructive algorithms
studied use their hidden units to overrule previous decision and can therefore explore only
a much smaller space of internal representation than a general two-layer network.

One can identify several future research directions as a natural extension to the current
work. First, the framework presented here may be extended straightforwardly to include
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other commonly used cost functions, e.g. of the formV = (κ−λ)n2(κ−λ) with n = 1, 2,
which may result in a different behaviour. Second, it would be highly desirable to investigate
the effect of finite stability and non-zero output distribution bias for fixed architectures
where theK → ∞ limit can be taken analytically. Of special interest would be whether
the exponent of the power-law is actually dependent on the stabilityκ and/or the biasmo of
the output distribution—two issues which have been addressed but could not be answered
with sufficient certainty in the framework employed in this paper.
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Appendix A. Replica calculation for two coupled perceptrons

In this appendix, we will briefly outline the replica calculation for two Boolean perceptrons
which have been successively constructed by variants of the upstart algorithm or the tiling-
like algorithms introduced in section 2 for the case of learning a set of random dichotomies.
The calculation is in spirit similar to the single perceptron [2, 22]. We have restricted
ourselves to the case of real valued weights and a spherical constraint and the RS ansatz for
simplicity, although the calculation is in principle also extendible to one-step RSB or/and
to binary{−1, 1} weights (Ising constraint).

A.1. Free energies of the coupled perceptrons

As mentioned in section 2.1, the task of the learner in the capacity problem is to implement
a given set ofp = αN random dichotomies(ξµ, ζµ), where the inputsξµ and outputsζµ

are taken from the distributions (1). In general, it is useful to extend this capacity problem
beyond saturation, where the learner cannot implement all examples but has to misclassify
some of them. The aim of training is then to minimize the training error, which is given
by summing over a suitablecost functionfor each example. Below, we will investigate
the minimal error and the capacity achievable for a learner consisting of two perceptrons
created consecutively by the constructive algorithms in question and for cost functions which
penalize the number of misclassifications.

The first perceptron with parametersΩ1 = {W1, θ1}, performing the mapping in (2),
aims to minimize the number of misclassifications irrespective of the constructive algorithm
and is therefore trained on the error function equivalent to the one introduced in (3)

E1 =
∑
µ

Θ(κ − λµ1 ) =
∑
µ

V1(λ
µ

1 , κ) (A.1)

where λµ1 = ζµhµ1 and Vk is the error measure for a single example and has been
introduced for convenience. It enables one to carry out most of the calculation without
specifying a particular error function. It also allows the introduction of the auxiliary term
(ε−Θ(ζµ) + ε+Θ(−ζµ)) picking out the wrongly-on and wrongly-off errors when taking
derivatives with respect toε+ or ε−.

The inputsξν for the training set of the second perceptron, with parametersΩ2 =
{W2, θ2}, are a subset of the original inputs while the targetsζ ν are defined according to
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the rules of the specific constructive algorithm and depend on the original target and the
output of the first perceptron.

For the tiling-like algorithm, the training set consists of all previous inputs and the
target is+1 for correctly and−1 for erroneously classified patterns. The error function to
be minimized is therefore

Et
2 =

∑
µ

Θ(κ − λµ1 )Θ(κ + λµ2 )+ [1−Θ(κ − λµ1 )]Θ(κ − λµ2 ) (A.2a)

=
∑
µ

V t
2(λ

µ

1 , λ
µ

2 , κ) (A.2b)

whereλµ2 = hµ2 andV t
2 is the generic error measure.

The error function for the upstart algorithm depends on the variant used and whether
the second unit is constructed to correct wrongly-off or wrongly-on errors. However, it is
self-evident by symmetry arguments that one has only to investigate the case of wrongly-off
error correction: the result for wrongly-on error correction can be obtained by flipping the
random output targetζµ → −ζµ, which corresponds to changing the sign of the output
distribution biasmo → −mo. Following similar considerations as above concerning the
training set and targets of the daughter unit (see table 1), one finds

E
up,γ
2 =

∑
µ

Θ(ζµ)Θ(κ − λµ1 )Θ(κ − λµ2 )

+Θ(−ζµ)[1+ (γ − 1)Θ(κ − λµ1 )]Θ(κ + λµ2 ) (A.3a)

=
∑
µ

V
up,γ

2 (λ
µ

1 , λ
µ

2 , κ) (A.3b)

whereγ switches between upstart II (γ = 1) and upstart III (γ = 0).
The total training error function therefore becomes for either algorithm using the generic

E2 for the second perceptron

E = E1+ δE2 (A.4)

where we have introduced a weighting factorδ = β2/β in the total energy whereβ2 acts
as a ‘quasi’-temperature for the second perceptron in the total energy function. This is
necessary because the minimization of the error is not unconstrained, i.e. the weights of the
first perceptron are trained first and subsequently frozen during the training of the second
perceptron.

The calculation will be performed in the thermodynamic limitN → ∞ with finite
example loadα = p/N , where the free energy per inputNβf = logZ is assumed to be
self-averaging. In the following, we will be interested only in the minimum error possible
and will therefore consider zero-temperature Gibbs learning for both perceptrons. The
separation of the training is achieved by first taking theδ → 0 limit, keeping terms up to
O(δ), and subsequently taking theβ →∞ limit†. The free energy splits into two parts as a
consequence:f1, which is of O(1), and represents the free energy of the first perceptron and
f2, which is of O(δ) = O(β2/β), and is the free energy of the second perceptron. Hence

〈〈f 〉〉 = 〈〈f1+ δf2〉〉 = − lim
β→∞

lim
δ→0

lim
N→∞

1

Nβ
〈〈logZ〉〉

= − lim
β→∞

lim
δ→0

lim
N→∞

1

Nβ

〈〈
log

∫
dµ (W2)dµ (W1) exp[−β(E1+ δE2)]

〉〉
(A.5)

† Alternatively, one can see this procedure as taking theβ →∞ with β2 constant and then taking theβ2→∞
limit.
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where〈〈·〉〉 is the quenched average over the distribution of patterns, consisting of integrations
over the biased input and output distributions (2.1).

To avoid the invariance(Wi , κ)→ (λWi , λκ), one enforces spherical constraints on
the weight vectors

dµ (Wi ) = δ(Wi ·Wi −N)
N∏
k=1

dWk. (A.6)

To be able to perform the quenched average we make use of the replica trick〈〈logZ〉〉 =
limn→0(〈〈Zn〉〉 − 1)/n. Note, that we treat the two perceptrons as one physical system
with parametersΩ = {Ω1,Ω2} when replicating the partition function. We apply the same
standard techniques including the introduction of order parameters for the single perceptrons
and order parameters describing the cross-overlaps between the two perceptrons

Q
σρ

i =
1

N
W σ

i ·W
ρ

i for ∀i and∀σ < ρ (A.7a)

Mσ
i =

1√
N

N∑
k=1

Wσ
ik

for ∀i and∀ σ (A.7b)

Rσρ = 1

N
W σ

1 ·W
ρ

2 for ∀ σ, ρ (A.7c)

with their Lagrange multipliersQ̂σρ

i , M̂σ
i , R̂σρ and the Lagrange multiplier̂Eσi associated

with the spherical constraints†. After some algebra, the replicated partition function
becomes

〈〈Zn〉〉 =
∫ ∞
−∞

∫ i∞

−i∞

( 2∏
i=1

∏
σ

dMσ
i dÊσi
2π

)( 2∏
i=1

∏
σ<ρ

dQσρ

i dQ̂σρ

i

2π

)(∏
σ,ρ

dRσρdR̂σρ

2π

)
× exp

{
N

[
G0(Q̂

σρ

i , Ê
σ
i , R̂

σρ)+ αGr(Q
σρ

i , θi
σ
i ,M

σ
i , R

σρ)

+ 1
2

∑
σ,i

Êσi −
∑
σ<ρ

∑
i

Q
σρ

i Q̂
σρ

i −
∑
σ,ρ

RσρR̂σρ
]}
. (A.8)

The two terms in the integral are the prior constraint Hamiltonian,

G0(Q̂
σρ

i , Ê
σ
i , R̂

σρ) = log

{∫ ∞
−∞

∏
σ

dWσ
1 dWσ

2 exp

[
− 1

2

∑
σ,i

Êσi W
σ
iW

σ
i

+
∑
σ<ρ,i

Q̂
σρ

i W
σ
iW

ρ
i +

∑
σ,ρ

R̂σρWσ
1W

ρ
2

]}
(A.9a)

which depends on the weight prior and the replicated Hamiltonian

Gr(Q
σρ

i , θi
σ
i ,M

σ
i , R

σρ) = log

〈 ∫ ∞
−∞

( 2∏
i=1

∏
σ

dλσi dλ̂σi
2π

)
× exp

{
− β[V1(λ

σ
1 , κ)+ δV2(λ

σ
1 , λ

σ
2 , κ)] − i

∑
σ,i

λ̂σi λ
σ
i

−i
∑
σ

[
ζ λ̂σ1 (θ

σ
1 −miM

σ
1 )+ λ̂σ2 (θσ2 −miM

σ
2 )

]
† The contribution ofM̂σ

i vanish in the thermodynamic limit similar to single perceptron calculations.
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− 1
2(1−m2

i )

[∑
σ,i

λ̂σi λ̂
σ
i + 2

∑
σ<ρ,i

λ̂σi λ̂
ρ

i Q
σρ

i + 2ζ
∑
σ,ρ

λ̂σ1 λ̂
ρ

2R
σρ

]}〉
ζ

(A.9b)

where〈·〉ζ denotes an average over the output distribution.

A.2. The RS ansatz

To make further progress one has to make an assumption for the structure of the replica
space. Here, we will only pursue the simplest RS ansatz, which assumes

Q
σρ

i = qi and Q̂
σρ

i = q̂i for ∀i andσ < ρ

Mσ
i = Mi θi

σ
i = θi and Êσi = Êi for ∀i and∀σ

Rσσ = r and R̂σσ = r̂ for ∀σ
Rσρ = s and R̂σρ = ŝ for ∀σ 6= ρ.

(A.10)

The physical interpretation ofqi is the same as for a single perceptron calculation: the
typical overlap of two solutions within the version space of the individual perceptrons. The
overlaps andr both describe the overlap between the two perceptrons, butr describes the
overlap of the second perceptron with the first perceptron on whose errors it has been trained,
whereass describes the overlap of the second perceptron with any other first perceptron
from the version space.

We note that RS is broken in this scenario. However, the aim of this calculation is to
assess whether the effect of coupling two perceptrons in a capacity calculation is stronger
than that of RSB in the individual perceptrons. A one-step RSB calculation would result in
four-dimensional integrals, which are difficult to evaluate numerically accurate enough to
find solutions to the saddle-point equations.

Inserting the above ansätze into (A.9a) and (A.9b) and taking then→ 0 limit yields

GRS
0 =

1

2

(Ê1+ q̂1)q̂2+ (Ê2+ q̂2)q̂1+ 2ŝ(r̂ − ŝ)
(Ê1+ q̂1)(Ê2+ q̂2)− (r̂ − ŝ)2

−1

2
log[(Ê1+ q̂1)(Ê2+ q̂2)− (r̂ − ŝ)2] (A.11a)

GRS
r =

〈∫
Dµ(t1, t2) log[FRS(t, β, κ, ζ, qi, θi, r, s)]

〉
ζ

(A.11b)

where all integrals without explicit limits are from−∞ to +∞. The measureDµ(t1, t2) is
given by

Dµ(t1, t2) = dt1dt2

2π
√
q1q2− s2

exp

[
− 1

2(q1q2− s2)

(
t1
t2

)T (
q2 −ζ s
−ζ s q1

)(
t1
t2

)]
(A.12)

and the functionFRS is given by

FRS(t, β, κ, ζ, qi, θi, r, s) =
∫

dλ1dλ2

2π(1−m2
i )
√
(1− q1)(1− q2)− (r − s)2

× exp

{
− β

[
V1(λ1, κ)+ δV2(λ1, λ2, κ)

+1

2

x2(ψ1+ t1)2+ δx1(ψ
+
2 + t2)2− 2δζz(ψ1+ t1)(ψ+2 + t2)
x1x2− δz2

]}
(A.13)
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wherex1 = β(1− q1), x2 = β2(1− q2), z = β(r − s), and

ψ1(λ1) = λ1+ ζ(θ1−miM1)√
1−m2

i

and ψ±2 (λ2) = λ2± (θ2−miM2)√
1−m2

i

. (A.14)

Here, we have introduced the self-consistent scaling ansätze for the order parameters of the
two perceptrons when taking theδ → 0 andβ →∞ limits with δβ = β1→∞ in order
to access the ground states with least errors only: the volume of the individual solution
spaces of the two perceptrons above their capacity limits shrink proportional to the applied
‘temperature’, which isβ for the first andβ2 for the second perceptron. Since the version
space of the first perceptron induces the difference betweenr and s, r − s should scale
with 1/β.

For β →∞, the integrals overλ1 and λ2 in (A.13) can be calculated by the saddle-
point method; the exponentional is evaluated atλ1 = λ

opt
1 and λ2 = λ2 = λ

opt
2 , where

λ
opt
1 and λ2 = λ

opt
2 jointly minimize the square bracket for givent1 and t2. The δ → 0

limit effectively constraints this minimization as required†: the dominant term of O(1) in
(A.13) is independent ofλ2 and can therefore only determineλopt

1 , which optimizes the
first perceptron. The inclusion of O(δ) terms determinesλ2 = λ

opt
2 , which corresponds

with the optimization of the second under the constraint of the first perceptron. Whereas
the calculation ofλopt

1 (t1) is identical for both upstart and tiling-like,λ2 = λ
opt
2 (t1, t2) is

determined algorithm dependent. We furthermore eliminate the conjugate order parameters
q̂i , Êi , r̂, and ŝ, keeping only the terms up to O(δ).

The free energyf1 of O(1), i.e. for the first perceptron, then simplifies to the already
known result

〈〈f1〉〉 = α
〈∫ √2x1−τ1

−τ1

Dt
(t + τ1)

2

2x1
+H

(√
2x1− τ1

)〉
ζ

− 1

2x1
(A.15)

where

τ1 = ψ1(κ) = κ + ζ(θ1−miM1)√
1−m2

i

Dt = dt√
2π

e−t
2/2

and H(u) =
∫ ∞
u

Dt . (A.16)

The free energyf1 is be evaluated at the saddle points with respect to the variablesx1 and
θ1.

The free energy of the second perceptron for the tiling-like algorithmf t
2 simplifies to

〈〈f t
2〉〉 = α

〈 ∫ ∞
√

2x1−τ1

dt1

[ ∫ τ−2

τ−2 −
√

2x2

dt2µ(t1, t2)
(t2− τ−2 )2

2x2
+
∫ τ−2 −

√
2x2

−∞
dt2µ(t1, t2)

]
+
∫ −√2x1−τ1

−τ1

dt1

[ ∫ √2x2−τ̃+2

−τ̃+2
dt2µ(t1, t2)

(t2+ τ̃+2 )2
2x2

+
∫ ∞
√

2x2−τ̃+2
dt2µ(t1, t2)

]
+
∫ −τ1

−∞
dt1

[ ∫ √2x2−τ+2

−τ+2
dt2µ(t1, t2)

(t2+ τ+2 )2
2x2

+
∫ ∞
√

2x2−τ+2
dt2µ(t1, t2)

]〉
ζ

−1− 2ẑr

2x2
(A.17)

† It is fairly straightforward but cumbersome to calculate the free energy forδ = 1, i.e. unconstrained minimization,
in order to assess the performance degradation due to constraining the optimization in the constructive algorithms.
Such a study is, however, beyond the scope of this work.
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where the measureµ(t1, t2) is derived from (A.12) by taking the appropriate limits

µ(t1, t2) = 1

2π
√

1− r2
exp

[
− t

2
1 − 2ζ rt1t2+ t22

2(1− r2)

]
(A.18)

and the following variables were introduced for convenience

τ±2 = ψ±2 (κ) =
κ ± (θ2−miM2)√

1−m2
i

τ̃±2 = τ±2 ∓ ζ ẑ(t1+ τ1)

and ẑ = z

x1
. (A.19)

The free energy of the second perceptron for the versions of the upstart algorithmf
up,γ
2 can

be simplified similarly

〈〈f up,γ
2 〉〉 = α

〈 ∫ ∞
√

2x1−τ1

dt1

{
Θ(ζ )

[ ∫ √2x2−τ+2

−τ+2
dt2µ(t1, t2)

(t2+ τ+2 )2
2x2

+
∫ ∞
√

2x2−τ+2
dt2µ(t1, t2)

]
+γΘ(−ζ )

[ ∫ τ−2

τ−2 −
√

2x2

dt2µ(t1, t2)
(t2− τ−2 )2

2x2
+
∫ τ−2 −

√
2x2

−∞
dt2µ(t1, t2)

]}
+Θ(−ζ )

{∫ −√2x1−τ1

−τ1

dt1

[ ∫ τ̃+2

τ̃−2 −
√

2x2

dt2µ(t1, t2)
(t2− τ̃+2 )2

2x2

+
∫ τ̃−2 −

√
2x2

−∞
dt2µ(t1, t2)

]
+
∫ −τ1

−∞
dt1

[ ∫ τ−2

τ−2 −
√

2x2

dt2µ(t1, t2)
(t2− τ−2 )2

2x2
+
∫ τ−2 −

√
2x2

−∞
dt2µ(t1, t2)

]}〉
ζ

−1− 2ẑr

2x2
. (A.20)

Since the free energyf2 for either algorithm is only of O(δ), it is evaluated with respect
to the variablesx2, θ2, r, and ẑ, with x1 and θ1 fixed by (A.15). The capacity limitαc
(here not normalized with respect to the number of units) of the combination of the two
perceptrons can be calculated from the saddle-point equations by taking thex2→∞ limit,
i.e. the second perceptron does not make any errors. Note, that for the upstart calculation
this is only a formal capacity limit, since the wrongly-on errors still need to be corrected.

A.3. Solutions of the saddle-point equations

The saddle-point solutions for the order parameters and the error rates as a function of the
normalized example numberα were evaluated for the different constructive algorithms and
a range of stabilitiesκ and output biasesmo. For brevity, only the most relevant effects for
the purpose of this paper will be reported graphically, especially the size of the correlations
and their impact on the capacity limit (and the error rate) in comparison with the impact of
one-step RSB in the individual perceptrons.

For the tiling-like algorithm the order parametersr and ẑ, describing the correlations
between the perceptrons, are shown in figure A1 as a function ofα for κ = 1 and variousmo

values. For zero output-distribution bias, the correlations are initially identical to zero above
the capacity limit, before their magnitude rises abruptly corresponding toα = αp, i.e. at
the phase transition of the first perceptron from the zero to the non-zero threshold solution.
Consequently for zero stability and zero bias, the perceptrons remain uncorrelated for allα.
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Figure A1. The correlations of two consecutive perceptrons created by the tiling-like algorithm
are shown via the two order parametersr and ẑ as a function ofα for κ = 1 and three bias
values (see the legend).
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Figure A2. The correlations of two consecutive perceptrons created by two variants of the
upstart algorithm (see the legend) are shown via the two order parametersr and ẑ as a function
of α for κ = 1 andmo = 0.

After the magnitude of the correlations has passed through a maximum, the order parameters
decay to zero asymptotically with power laws whose exponents are approximately

r ∝ α−1.9±1 and ẑ ∝ α−0.95±5 (A.21)

where the error indicates the uncertainty in the last significant digits only. The uncertainty
is most likely caused by logarithmic corrections to power laws with theoretical exponents
of −2 and−1, respectively.

For non-zero bias, the correlations are largest at the capacity limit and the order
parameters decay with the same power laws forα →∞. Note, that a non-zero overlapr
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between the perceptrons is always negative, i.e. the perceptrons are anti-correlated. The
physical interpretation of the order parameterẑ is less clear. In figure A2 the order
parametersr and ẑ are shown for the upstart algorithm with eitherγ = 1 (Aup

II ) or γ = 0
(Aup

III ) andκ = 1, mo = 0. In comparison with the tiling-like algorithm, several differences
and similarities are remarkable. First, the correlations for the upstart algorithm are always
finite for zero bias. Second, one findsrẑ < 0 as previously, however, the sign of the
order parameters is reversed, i.e.r > 0 and the perceptrons are positively correlated.
Third, the magnitude of the correlations for both variants of the upstart algorithm are
always significantly larger than for the tiling-like algorithm. Note that the overlapr of
the perceptrons for upstart III is larger than for upstart II, but the reverse is true for the
magnitude ofẑ. The correlations for both variants and their differences are largest around
the capacity limit. Forα →∞ the differences between the two variants vanish, since the
difference in the training sets becomes negligible, and the correlations decay to zero with
identical power-law exponents

r ∝ α−0.995±10 and ẑ ∝ α−0.96±5 (A.22)

where the deviation from−1 may be caused by logarithmic corrections. Note furthermore
that at the phase transition pointαp, the order parameters are non-differentiable as for the
tiling-like algorithm with the possibility of local maxima for the magnitude of the correlation
order parameters.

In general, one finds that any correlations decrease the capacity limit of the combined
perceptrons or increase the error rate above saturation. The correlations are usually the
largest around the capacity limit (besides for the tiling-like algorithm, where the maximum
can be found aroundαp for finite κ and zero or very small bias) and decay algebraically
above it. In general, one also finds that the correlations grow with increasing stability and
diminish for very large bias after passing through a maximum for non-zero bias.

In order to assess the impact of the correlations in comparison with RSB in the individual
perceptrons above saturation more quantitatively, we concentrate on the capacity, the region
where the correlations have generally the largest impact. The most meaningful comparison
is found by calculating and comparing̃mo as a function ofκ for various fixed normalized
capacitiesα̂c (as in figure 2 for the single perceptron) for the tiling-like and the variants of
the upstart algorithm and for correlated RS as well as uncorrelated RS and one-step RSB
ans̈atze. Note, that̃mo (defined asm̃o ≡ (1− |mo|)) is ambiguous for the upstart algorithm
as the symmetry of the capacity undermo ↔ −mo is broken in the above calculation and
a true capacity limit would also need three perceptrons. This ambiguity is resolved by
postulating that the ‘capacity limit’ for biasmo is given by the unit type that saturates first.
This leads to the constraintmo < 0 for the upstart calculation w.l.o.g. Note furthermore
that for decreasing̃mo the portion of wrongly-on and correctly-off patterns, which cause the
difference between the versions of the upstart algorithm and between the upstart and the
tiling-like algorithm, become smaller, leading to similar results for largeα̂c.

In figure A3, m̃o is therefore only shown for two perceptrons coupled via the tiling-
like algorithm in the uncorrelated one-step RSB ansatz (figure A3(a)), whereas1m̃o =
[m̃o(Aup

III )−m̃o(At)]/m̃o(At) is shown for the upstart III algorithm to magnify the differences
(figure A3(b)). Both quantities are multiplied bŷαc in order to eliminate the most dominant
scaling. In comparison with the single perceptron (figure 2),m̃o is larger due to the addition
of the second perceptron and grows slower withκ due to the error rate of the first perceptron
increasing more quickly for larger stability. This already indicates that the tendency of
m̃o growing with κ reverses eventually for larger networks. The comparison ofm̃o in
figure A3(b) for the two constructive algorithms shows thatm̃o for the upstart algorithm is
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Figure A3. (a) The biasm̃o (or ratherm̃oα̂c to highlight the scaling ofαc with m̃o) is shown
as a function of the stabilityκ for several fixed normalized capacitiesα̂c(mo) ≡ αc(mo)/αc(0)
(see the legends) for two perceptrons built by the tiling-like algorithm. (b) For the upstart III
algorithm, the results are quite similar for largeα̂c and to highlight the differences,1m̃o ≡
[m̃o(Aup

III )− m̃o(At)]/m̃o(At) is shown normalized bŷαc.

always larger, although the difference iñmo vanishes very quicklŷαc→∞ (or m̃o→ 0),
especially considering the fact that the difference inm̃o has been magnified additionally by
1/m̃o(At).

In figure A4, the impact of one-step RSB and correlations (within an RS) ansatz (RSc)
is compared by plotting1m̃o

RSB
RSc
≡ (m̃o

RSB−m̃o
RS)/(m̃o

RSc−m̃o
RS) in the same scenario as

figure A3 for the tiling-like (figure A4(a)) and the upstart III algorithm (figure A4(b)) (the
differences to upstart II are insignificant). For both tiling-like and upstart algorithms, one
finds that the corrections due to correlations are usually smaller than those due to RSB and
become insignificant for largêαc (1m̃o

RSB
RSc
� 1), corresponding to large biasmo (as found

for the last perceptrons of a large network). Furthermore, one finds that the impact of the
correlations increases in general with the stabilityκ. For smallα̂c and large stabilityκ, one
actually finds a region where correlations are more significant than RSB (1m̃o

RSB
RSc

< 1),
suggesting corrections of the capacity results for small networks and slightly biased output
distributions. Note, that the correlation corrections of the capacity are usually at least twice
as large for the upstart than for the tiling-like algorithm, which has already been suggested
by the larger magnitude of the upstart than the tiling-like correlation order parameters shown
in figures A2 and A1, respectively.

Although, the correlations can therefore be significant in some regions ofmo, κ, and
α space, the area is confined to smallmo, largeκ, andα around the capacity limit, which
is not extremely relevant for large networks, where most units are highly saturated, and
small stabilities, which are of most interest. An open question is the effect of correlation
over several generations of the constructive algorithm. It seems, however, natural that the
correlations between consecutive perceptrons should be dominant.

Appendix B. Replica calculation for a single perceptron

Below, we briefly summarize the results for the replica calculation for the Boolean
perceptron learning random dichotomies above its saturation limit in order to make this work
self-contained, as they are extensively used in the capacity calculation for the constructive
algorithms. For a more detailed treatment the reader is referred to [2, 22].
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Figure A4. The size of corrections tõmo from the RS ansatz due to RSB and correlations within
the RS ansatz (RSc) is compared by plotting1m̃o

RSB
RSc
≡ (m̃o

RSB− m̃o
RS)/(m̃o

RSc − m̃o
RS) in

the same scenario as figure A3 for (a) the tiling-like and (b) the upstart III algorithm with the
fixed normalized capacitieŝαc(mo) given in the legends.

The basic ideas for the replica calculation are similar to appendix A and the free energy
of the RS ansatz can be directly taken from (A.15), by dropping the perceptron index. The
capacity limit,αc, can then be calculated by taking the limitx → ∞ for the saddlepoint
equation of (A.15). As mentioned previously, RS is broken beyond the capacity limit and the
Parisi scheme of successive steps of RSB [3] must be employed, whose first approximation
is the one-step RSB ansatz, for whichQσρ is a n×n matrix

(Qσρ)n×n =


Q1 Q0 · · · Q0

Q0
. . .

. . .
...

...
. . .

. . . Q0

Q0 · · · Q0 Q1


n×n

(B.1)

whereQ0 is a m×m matrix with elementsq0 andQ1 is a m×m matrix with 0 on the
diagonal andq1 elsewhere. The ansatz for̂Qσρ has the same block structure as forQσρ

with matricesQ̂0 andQ̂1. The ansatz for the remaining order parametersMσ , θiσ , andÊσ

is as for RS (see (A.10)). Note thatq1 andq0 are now overlap parameters which describe
different aspects of the solution space of the single perceptron and can be interpreted as the
typical overlap between pairs of weight vectors in the same and different solution spaces,
respectively.

After some algebra, including the elimination of the conjugate order parameters (q̂1,
q̂0, and Ê) and the introduction of the self-consistent ansatz form that w = m/(1− q1)

remains finite in theβ →∞ limit, the one-step RSB free energy can be simplified to

〈〈−fRSB〉〉 = α

wx

〈∫
Dt log[FRSB(t, w, x, q0, κ, ζ θ)]

〉
ζ

+ q0

2x(1+ w1q) +
log(1+ w1q)

2wx
(B.2a)

whereτ and Dt are taken from (A.16),1q = 1− q0, and the functionFRSB is given by

FRSB(t, w, x, q0, κ, ζ θ) =
∫ √

2x−µ√
1q

− µ√
1q

Dz exp

[
−w

2

(√
1q z+ µ

)2
]
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+H
(

µ√
1q

)
+ e−wxH

(√
2x − µ√
1q

)
(B.2b)

with µ = τ +√q0 t . The free energy has to be evaluated at the saddle points with respect
to the variablesw, x, q0, andθ .

B.1. The Ising perceptron

For the Ising perceptron the replica calculation is identical to the spherical perceptron but
for a change in the prior constraint Hamiltonian, where the integration over weight space is
performed. However, this leads to significant changes when calculating the capacity limit
or theβ →∞ limit above saturation, due to the discreteness of the weight vector. Again,
the RS ansatz breaks down above the capacity limitαc, which, however, coincides with
the entropy of the RS solution becoming zero and is not given in thex →∞ limit†. The
entropy is given by

s = −1

2
(1− q1)q̂1+

∫
Dt log

[
2 cosh

(
t
√
q̂1

)]
+ α

〈∫
Dt logH

(
τ +√q1 t√

1− q1

)〉
ζ

(B.3)

and has to be evaluated at its saddle point with respect toq1, q̂1, andθ .
Above the capacity limit, a one-step RSB solution is found characterized byq1 = 1,

q̂1 = ∞ for finite β, and the self-consistent ansätze thatv = wx = mβ and y = m
√
q̂0

remain finite forβ → ∞. The one-step RSB free energy of the Ising perceptron is then
given by

〈〈−fIRSB〉〉 = α

v

〈∫
Dt log [FIRSB(t, v, y, q0, κ, ζ θ)]

〉
ζ

+1

v

∫
Dt log[2 cosh(yt)] − 1qy

2

2v
(B.4a)

where the functionFIRSB is

FIRSB(t, v, y, q0, κ, ζ θ) = e−v + (1− e−v)H
(

µ√
1q

)
(B.4b)

with µ as before. The free energy has to be evaluated at its saddle point with respect to the
variablesv, y, q0, andθ .

B.2. The error rates

The error rates of wrongly-off and wrongly-on patterns for the spherical perceptron (within
both a RS and one-step RSB ansatz) and for the Ising perceptron (within a one-step RSB
ansatz) are given by

ε
off/on
RS = 1

2(1±mo)H
(√

2x − κ ∓ θ
)

(B.5a)

ε
off/on
RSB = 1

2(1±mo)

∫
Dt

e−wxH
(√

2x −√q0 t − κ ∓ θ
)

FRSB(t, w, x, q0, κ,±θ) (B.5b)

ε
off/on
IRSB = 1

2(1±mo)

∫
Dt

e−vH
(√

2x −√q0 t − κ ∓ θ
)

FIRSB(t, v, y, q0, κ,±θ) (B.5c)

respectively, where the order parameters are determined by the respective saddle points.

† In this region the ansatz forx breaks down, sinceq1 < 1 even forβ →∞.
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Appendix C. Propagation of errors for the upstart algorithm

Similarly to the tiling-like algorithm, the capacity of networks built by variants of the
upstart algorithm can be calculated by propagating the errors of the individual perceptrons.
Consider for example the procedure for upstart IIIa. Again the rules of the algorithm as
described in section 2 are followed and the similar considerations to section 3.3 are applied.
The following notable differences are caused by the upstart algorithm creating two different
types of units,U+ andU−. First, the procedure becomes dependent on the type of error
made, i.e. is written in terms ofεon andεoff instead ofε = εon+εoff . Furthermore, sinceU−
is connected to the output with a negative weight, the rôles ofoff andon are reversed, e.g.
wrongly-on patterns ofU− are actually wrongly-off patterns forM. Second, the example
load αi decreases from the initial loadα0 over subsequent generations, since patterns can
be omitted from the training sets and it is useful to introduce the quantitiesᾱi ≡ αi/α0,
which is the probability of an example being in the training set and will be referred to
as load fractions. Third,̃mi is in general negative since the target of the majority of the
patterns is 0 (or−1) and not+1 as in the tiling-like algorithm†, and m̃i ≡ 1+ mi . It is
furthermore useful to restrict the bias of the original output distribution tomo < 0 w.l.o.g.
and to introduce the fraction of training patternsᾱζ

±
0 ≡ (1±mo)/2 with ζ± = ±1. Fourth,

it becomes necessary to propagate errors over several generations, since only one type of
unit is created with each generation and subsequently only one type of error is dealt with.
A symbolic program for the procedure called by the capacity root solver is outlined in
figure C1. The procedure for upstart IIIb is identical to upstart IIIa, but for a change in the
creation criterion, which is changed to(εon

i ᾱ
ζ−
0 > εoff

i ᾱ
ζ+
0 ) to account for conditioning the

error type probability on the initial target probability.
For the procedure of upstart II, two major changes have to be made. The first is

induced by the different training set criteria, i.e. the inclusion of wrongly-off patterns into
U−i ’s (and wrongly-on patterns fromU+i ’s) training set. The load fractions forU±i+1 are

therefore changed tōαi+1 := εoff/on
i + ᾱζ∓0 . Since these incorrect pattern are included in the

training set, although no attempt is been made to correct them, it is self-evident, that it is
possible to make an error on an example which is already labelled as incorrect. Therefore,
the calculated error rates have to be corrected in order to avoid such multiple counting of
errors. Employing the assumption that the perceptrons are uncorrelated, the overall errors
after the creation of aU±i unit in the current generation become

ε
off/on
i = ᾱiεoff and ε

on/off
i = εon/off

i−1 + εon

[
1− ε

on/off
i−1

ᾱ
ζ∓
0

]
ᾱi . (C.1)

The second major changes caters for cases where both types of perceptrons are created
simultaneously, e.g. allowing for the possibility of two error rate calculations in the inner
loop. This case necessitates the introduction of unit specific quantities, such asm̃±i and
ᾱ±i , where i is now purely a generation index‡. Note, that in this case the errors are
not propagated over generations, since both type of errors are corrected simultaneously,
but the simultaneous training combined with the non-zero overlap of patterns between the
two training sets again leads to an overlap of the erroneous patterns. Following similar

† Due to the symmetry of the equations formo→−mo, ζµ →−ζµ, andθ →−θ , this effectively only changes
εon↔ εoff and the sign of the threshold.
‡ The number of units created have therefore to be counted by a separate label.
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Figure C1. A symbolic capacity calculation procedure of the upstart IIIa algorithm called by
an all-purpose root solving routine.

considerations as above, one finds

ε
off/on
i = εoff

± ᾱ
±
i + εon

∓

[
1− εoff

±
ᾱ±i
ᾱ
ζ∓
0

]
ᾱ∓i . (C.2)

A closer inspection of (C.2) reveals that its symmetry leads to identical wrongly-on and
wrongly-off errors for all generations of the algorithm if the initial output distribution
bias is zero (̄αζ

±
0 = 1

2) and the first perceptron makes the identical fraction of error
types, i.e. the solution with zero threshold (see discussion in section 3.2) applies. In this
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case, the computational load for the capacity calculation is reduced by a factor of two
and the symmetry leads to much smoother capacity curves as the two last units saturate
simultaneously.

Appendix D. Derivation of the asympotitic capacity of the upstart algorithm

In the case of upstart algorithm variants, the capacity of the complete network is a function
of the capacityαKc of the last perceptronU±K and its load fraction̄α±K , due to some patterns
being eliminated from its training set. For upstart II,ᾱ±K can be expressed in terms of the
applied bias̃m±K , and the initial output-distribution biasmo [which is for convenience again

written in terms of the initial load fractions̄αζ
±

0 ≡ (1±mo)/2] to yield

αKc =
αc(m̃

±
K)

K

(2− m̃±K)
2ᾱζ

∓
0

. (D.1)

ForK →∞ and consequentlỹm±K → 0, the capacity becomes asymptotically

αKc '
1

bᾱ
ζ∓
0

[log(K)]m−1 (D.2)

following the derivation for the tiling-like algorithm in section 5.
For upstart III, the derivation becomes slightly more complicated due to the additional

exclusion of one class of incorrect patterns from the training set of the saturated unit. In
this case,ᾱ±K can only be bounded in terms of̃m±K and ᾱζ

±
0 , leading to bounds on the

capacity which are specific on the unit creation selection criterion applied. For upstart IIIa,
the capacity bounds are

αc(m̃
±
K)

K

(2− m̃±K)
2ᾱζ

∓
0

6 αKc 6
αc(m̃

±
K)

K

1

ᾱ
ζ∓
0

(D.3)

and similarly for upstart IIIb, one finds

αc(m̃
±
K)

K

(2− m̃±K)
2ᾱζ

∓
0

6 αKc 6
αc(m̃

±
K)

K

[2− (2− 1/ᾱζ
∓

0 )m̃
±
K ]

2ᾱζ
∓

0

. (D.4)

However, forK →∞ (m̃±K → 0), these bounds become tight and the asymptotic capacity
again reduces to (D.2).
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